Debugging of Embedded IoT Systems

Jarno Tervo
Key Account Manager

3-May-2017
Embedded Conference Finland
The Triangle of 5G Use Cases

eMBB – the known playground
- Established ecosystem (operators, manufacturers, certification of devices)
- Evolution from existing technologies (LTE-A, 802.11 ad) and revolutionary additions (cm-/mm-wave)
- It’s all about data (speed and capacity)

Massive IoT
- A diverse ecosystem (operators, manufacturers, local authorities, certification only for some technologies)
- Mix of technologies (GSM, Lora, Zigbee, WLAN, Bluetooth, Cat M, NB-IoT, …)
- It’s all about cost efficiency and massive connectivity

Ultra reliable & low latency communication

URLLC
- A significantly enhanced and diverse ecosystem (operators (?), manufacturers, verticals, certification not existing (yet))
- Existing technologies do not provide sufficient performance
- It’s all about reliability and security (data and capacity)
“Anything that benefits from network connection will be connected”

Ericsson, 2010
Agenda

- IP Connection Security Analysis
- Power consumption measurement, Battery lifetime
- Debugging of Embedded IoT Systems with a Multi-Domain Oscilloscope
R&S Test Solution

The common IP data testing solution within the R&S®CMW platform

R&S®CMW500

Key features

Data ApplicationUnit – B450D/H:

- Common data testing solution over all technologies in the R&S®CMW platform
- Simple to use, easy to configure “in a box” data testing solution
- IPv4 and IPv6 support
- Data-testing capabilities
 - Server for FTP, HTTP, IMS, DNS and video
 - IMS services: voice, video, SMS and RCS
 - IP impairments (now called quality of service)
 - IP logging, IP protocol statistics and IP connection security analysis
- PING latency measurements
- Throughput measurements and generator (iperf)
- eMBMS broadcasting test solution
- ePDG interface for easy WLAN offload and VoWLAN testing (one box)
R&S Test Solution
IP connection security analysis

R&S®CMW500

Internet

Ethernet

IP data traffic

RF channel (LTE, WCDMA, WLAN, etc.)

IP data traffic

R&S®CMW-KM052 measurement parameters

- Endpoint geolocation (country)
- Endpoint domain name
- Analysis of encrypted vs. unencrypted traffic
- Strength of encrypted channels
- Certificate detail
- Keyword search in the IP stream
- Device under test IP port analysis

COMPANY RESTRICTED
What is CMW-KM052 IP Connection Security Analysis?

- The new option CMW-KM052 IP Connection Security Analysis extends the functionality of R&S CMW500 to collect, summarize and display objective security parameters of established IP connections of both mobile devices and IoT devices.

 e.g:
 - Endpoint geo location (country)
 - Encrypted vs. unencrypted traffic
 - SSL/TLS handshake details
 - Clear text keyword matching analysis
 - …

CMW-KM052 solution is based on the R&S® PACE 2 protocol and application classification and analysis engine from the R&S Cybersecurity division.

Summary

- **The first mobile communication tester** combining RF and protocol test in a single instrument, inclusive IP application testing and **IP connection security analysis**.

- IP connection security measurements **under controlled network conditions for cellular and non-cellular technologies** (different countries, different MNOs, repeatable/comparable results from network side).

- **No modification** or additional tools or software **required on device under test**
 - important if no debugging interfaces are available or no modification of the device is possible or allowed

- **Just a few user skills** needed for an overview of IP-CS KPIs (e.g. compared to Wireshark filtering)
Agenda

- IP Connection Security Analysis
- Power consumption measurement, Battery lifetime
- Debugging of Embedded IoT Systems with a Multi-Domain Oscilloscope
R&S Test Solution
Battery Life Measurements - CMW500 and multi-channel power probe

- Multi-channel power monitoring (2 or 4 ch)
- Total consumed power versus consumed power of parts of the circuit, like the application processor, baseband chip
Correlation with signaling states (sig. event markets)
Ideal for testing low currents (~ nA)
- High dynamic range and time resolution
Agenda

- IP Connection Security Analysis
- Power consumption measurement, Battery lifetime
- Debugging of Embedded IoT Systems with a Multi-Domain Oscilloscope
Embedded IoT Devices
Architecture & Challenges

IoT devices combine resources for sensor data collection, computing and connectivity, as well as infrastructure for power management and storage.

- **Embedded Designs**
 - with high integration level of different technologies
- **Often battery powered**
1. Test Challenges
Current Consumption

Challenge
- Battery life time of IoT systems is supposed to be measured in years
- *Optimize system functionality and power consumption*

Requirements for Test Equipment
- Capable to measure fast transitions from single digit mA to several 100 mA
- Time correlation to other T&M equipment
2. Test Challenges
Wireless Interfaces

Challenge
- Many IoT devices use wireless connectivity
- Wireless communication modules are new for many Embedded Design developers

Requirements for Test Equipment
- Capable to capture and analyze wireless signals
- Time correlation to other T&M equipment
3. Test Challenges
Debugging overall system functionality

Challenge
- IoT systems combine multiple functional cores at very dense space
- Risk of interferences

Requirements for Test Equipment
- Tools to analyze various signals types:
 - DC, analog, current, logic, protocol or spectrum
- Time correlation to other T&M equipment
R&S Debug Solution: the R&S®RTO Oscilloscope
R&S®RTO Key Performance Parameters

Best performance
- 6 GHz, 20 Gsample/s, 2 Gsample deep memory
- Low noise, high dynamic, up to 16-bit res.
- Finding signal faults quickly - 1 million wfms/s
- Trigger on any signal details - digital trigger system

Widest range of capabilities
- QuickMeas: key results at the push of a button
- Integrated spectrum analysis
- History: analyze previous acquisitions
- Mask: settings in only seconds
- First Zone trigger in time and frequency domain

Powerful user interfaces
- High-resolution 12.1” capacitive touch screens
- Easy customizable waveform displays
- Fast access to important tools
- Undo/redo forgives your mistakes
R&S®RTO Current Measurements

RTO key capabilities for high-sensitivity measurements
- Low noise, >7 bit ENOB ADC, high sensitivity FE
- 16 bit High Definition mode

Current probes for small currents and high bandwidth
- R&S®RT-ZC30 High-sensitivity current probe
 (120 MHz, 5 A (RMS), 60 uA noise, 1 V/A)
- R&S®RT-ZC20B
 (100 MHz, 30 A (RMS), 1 mA noise, 10 V/A)
High Definition system design

- Single-core monolithic ADC (10 Gsample/s, > 7 ENOBs)
- 16 bit wide processing architecture

High Definition mode (R&S®RTO-K17)

- Up to 16 bit vertical resolution
- More signal details and more precise analysis results
- Real-time triggering on smallest signal details
- No aliasing, no decimation
- High acquisition rate and signal processing
- All in one box!
R&S®RTO RF Signal Analysis

Integrated FFT-based Spectrum Analysis

- Spectrum analyzer like operation
 - Set START, STOP, SPAN and RBW

- Overlapping FFT
 - Fast and accurate detection of rare events

- Digital down-conversion (DDC)
 - FFT done on the selected frequency range
 - Higher resolution compared to conventional FFT

- Zone Trigger in Frequency Domain

- ... and additionally
 - Up to 4 channels in parallel
 - Correlated analysis of signals in time- & frequency domain
R&S® RTO RF Signal Analysis
Enhanced Spectrum Analysis with RTO-K18

Spectrogram
- Visualization of changes vs. time
 - Power vs. time
 - Frequency vs. time

Peak list
- Peak visualization in frequency domain
 - Automatic labeling
 - Threshold level for peak detection

Log-Log scaling
Acquisition of modulated signals and delivery of the corresponding I/Q data

- Resampling of the I/Q data to a required sample rate
- Supported input signal formats:
 - RF signals
 - I/Q baseband signals
 - Modulated signals in low-IF range
R&S® RTO RF Signal Analysis

Signal Processing

Vector Signal Explorer SW:
- I/Q Analyzer
- Analog Demodulation
- Vector Signal Analysis (VSA)
- 3G FDD
- GSM
- WLAN
- LTE
- etc.
Measurement Examples
Gemalto 2G Cinterion IoT module Setup

2G Cinterion IoT module from Gemalto
- Quad-Band GSM transceiver and processor
- GPIO / I2C interfaces; Serial modem interface
- Internal flash memory
- Power management unit

Test Equipment
- RTO oscilloscope (current, voltage, RF, MSO: UART T&D)
- Communication tester (R&S CMW290)
- Power supply HMP4040
- PC (PuTTY)
Example 1a: Correlation of Current Consumption with Device Activities

- **Device activity:**
 - GPRS connection in different timeslots

- **R&S RTO2000**
 - Triggers on start of GSM bursts
 - GSM bursts correlate with voltage drops (yellow) and current peaks (green)
 - Display spectrum on gated GSM slot
Example 1b: Minimum Current Consumption at Sleep Mode

- **Device activity:**
 - Sleep mode and reacting on paging sequences

- **R&S RTO2000**
 - Trigger on CTS pulse
 - Measures Mean and Max current in sleep interval
Example 2: Time-correlated Debugging of System Functionality

- **Device activity:**
 - Sent SMS message

- **R&S RTO**
 - Triggers on sending the SMS message at the UART
 - Observe the delay of the GSM burst
 - Correlate GSM burst with current
 - Observe GSM burst in spectrum
Example 2: Time-correlated Debugging of System Functionality (II)

PC
- Writes message (PuTTY)
- Sends message (UART)

R&S RTO Oscilloscope
- Triggers on SMS message sent on UART
- Observe the delay of the GSM burst
- Correlate GSM burst with current
- Observe GSM burst in spectrum

R&S CMW
- Receives message,
- Reads message
Example 3: Analysis of the Wireless Output Signal

- **Device activity:**
 - Uplink communication of the GSM module

- **R&S RTO2000**
 - Use VSE Analysis SW for GSM signal analysis
 - Synchronization packets, output power, bandwidth, EVM measurements, etc.
Example 4: MediaTek IoT Device: MT2502A

- **Device activity:**
 - WiFi and USB communication

- **R&S RTO**
 - Triggers on WiFi burst related current peak
 - Correlate current / voltage with WiFi and USB traffic
Powerful IoT debug solution

- R&S®RTO oscilloscope supports:
 - Time-correlated debugging on system level
 - Analog, logical, protocol and frequency signals
 - Small current measurements
 - Analysis of wireless interfaces

- Broad R&S T&M portfolio for IoT applications

Let's sum up
The Rohde & Schwarz Oscilloscope Portfolio
50 MHz .. 6 GHz

- Scope Rider: 50 MHz … 500 MHz
- HMO1002/1202: 50 MHz … 300 MHz
- RTB2000: 70 MHz … 300 MHz
- HMO3000: 300 MHz … 500 MHz
- RTM2000: 200 MHz … 1 GHz
- RTE1000: 200 MHz … 2 GHz
- RTO2000: 600 MHz … 6 GHz

March 2017

Performance class / segment
Thank you.