Adapting to Change

Lessons from the Chip Crisis for Electronic Circuit Design

May 2023

Nice to meet you

Milan Piskla, Embedded Department Director

Background in microelectronics, Embedded and AI enthusiast

David Gustafík, Electronics Design Engineer

Electronics engineer by hobby, education and trade, PCB designer

Ciklum

Formerly CN Group, we have been providing high quality IT software development, consulting services, and mechanical & electrical design engineering to our partners in Scandinavia, Germany, Austria, Switzerland, Benelux, USA and the UK for more than 28 years.

Ciklum in embedded / IoT

Mechanical Design Engineering

HW / Electronics

Embedded SW

AI / Machine Learning

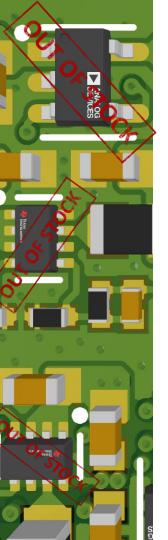
Our typical embedded project

- Consumer electronics (80%), Test & Measurement equipment (20%)
- Microcontrollers based on ARM M-profile or ESP32
- Typically low-power requirements
- Various sensors
- BLE or other wireless technology
- IoT

Chip crisis

What is it?

- Ongoing supply chain crisis, started 2020
- Complex reasons local and global, political and environmental...
- Effects:
 - oExtreme lead times for even common ICs
 - oProduction of high end devices halted due to lack of a few cent part
 - Price gouging 2\$ chip being sold for 40\$
 - o Rise of dubious suppliers
 - Major disruption to pretty much every area of the industry
 - oIncreased price or low availability for finished product
- Many companies did not make it



Lessons learned - hardware

01

- ightarrow Tips and tricks that helped us
- → Documentation is your friend
- → Variants are great
- → Perfect is not always better
- → Future-proofing your libraries

Limiting the effect of shortages

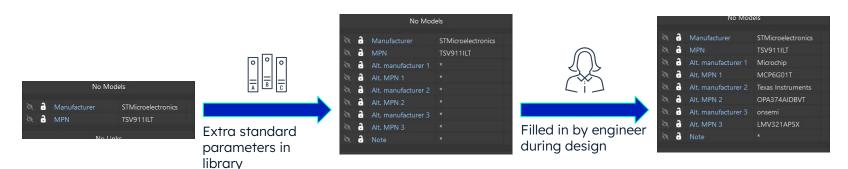
What to prepare for?

- What should your design be prepared for?
 - Unavailability of critical parts
 - Inability to source from reliable sources or extreme price gouging
 - Rapid change of as many parts as possible

U1100A TSV911ILT C1100 100n C1101 10p U1100A TSV911ILT Not very critical, use any reasonably low bias current op amp, must run from 2.8V when battery is low.

Documentation

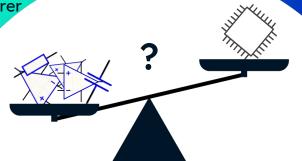
It really is your friend


- Proper documentation is important
- A circuit description of even seemingly obvious functions can help
- A schematic is enough to see the function, but it might not be enough to see the reasoning behind the choices
- Always document:
 - What does that part of the circuit do
 - Why were the specific parts chosen
 - How it interacts the rest of the design

Bill of Materials (and Alternatives)

A few extra columns can help

- Additional parameters in a part
- Good design practices that allows more freedom for assembling the board


A perfect fit is not always better

Very specific ICs are great... until they aren't

 Advantage of specific parts: Application specific ICs can solve your problem in a single package with minimal external components - they are great

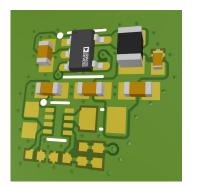
Disadvantage: They bind your design to one and only one manufacturer
 and part

Always consider using a solution from more generic parts

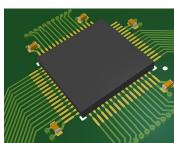
Beware of dubious suppliers

Caveat emptor

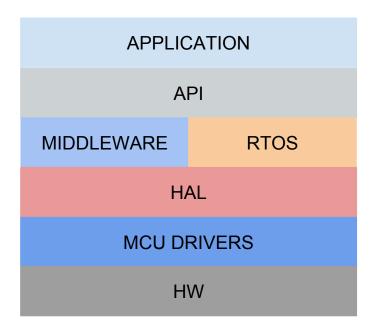
- Current situation amplified many of the already existing problems within our industry
- Counterfeit ICs have caused billions in damages
- Recycled, rebranded or factory reject ICs cause quality issues
- Whenever possible avoid dubious sources
- When impossible, verify




Alternatives and blocks

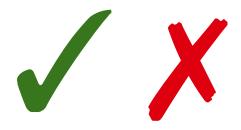

Prepare whole block ahead of time

- When space constraints and other constraints allow , add an alternative block
- Assemble based on what is available
- Just in case test as needed

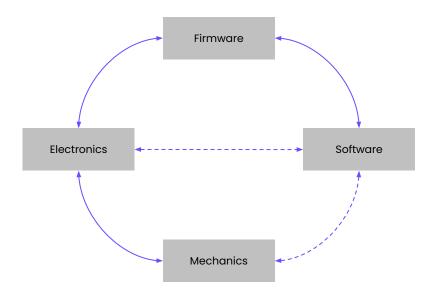

Lessons learned - software

02

- → Embrace hardware independence
- → Emphasize modular and test-driven development
- Enhance collaboration with hardware teams


Layered firmware architecture

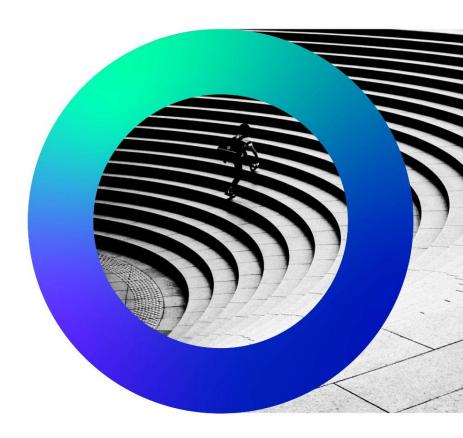
Unit testing and CI/CD revisited


- Early detection of issues
- Facilitating refactoring and reusability
- Continuous integration and automation
- Documentation

17

Enhanced collaboration between teams

Opportunities


03

- → When life gives you lemons make lemonade
- → Implement low risk improvements
- \rightarrow Fix that minor bug
- → Try something new

An annoying redesign is an opportunity

How?

- Any change should be followed up by appropriate tests
- When moving to a different MCU architecture or doing other significant modifications, changes are unavoidable and extensive testing is a must
- Ideal time for low risk changes or fixes

Small changes and fixes

Fix the minor bugs or known issues

- Bugs and issues will be discovered
- Major ones need to be addressed ASAP, non-critical minor ones can wait
- Small ones are often added to a "when there's time" TODO list

A redesign is the ideal opportunity to fix the minor issues that have accumulated over the years

Update, explore, sync

Improve your product

- A redesign may be a good opportunity to improve the design
- New understanding about the circuits may have opened up new options
- New parts may have become available
- Any change should be followed up by tests

Rewrite it with the future in mind

Think of the next crisis

If a major rewrite becomes necessary, it may as well be done
 right

- Think of the next time an MCU will need to be exchanged for whatever reason
- As mentioned, add an abstraction layer, structure the
 firmware in such a way that makes future porting less painful

Conclusion

04

- → What the future holds
- \rightarrow How can we help

What does the future hold?

- Impossible to know what the future holds
- A globalized supply chain will always be sensitive to global problems
- Predictions range from cautiously optimistic to very pessimistic
- Either way, designs with easily replaceable part or blocks will have an advantage

How can we help?

Mechanical Design

Electronics

Embedded SW

Machine Learning

Backend / Cloud Development

Web/mobile app development

Thank you!

David Gustafík david.gustafik@ciklum.com www.ciklum.com