JavaScript is currently disabled.Please enable it for a better experience of Jumi.

logotypen

Aalto-yliopiston ja Jyväskylän yliopiston tutkijat ovat kehittäneet uuden tavan tehdä huipputarkkoja mikroaaltoalueen mittauksia. Ratkaisu perustuu nanomekaanisen värähtelijän eli ”nanorumpukalvon” yhdistämiseen kahteen suprajohtavaan piiriin.

Varsinaisesti tutkimus liittyi tieteelliseen työhön vahvistinten kvanttirajasta, mutta kehitettyä menetelmää voidaan käyttää kvantti-informaation käsittelyssä esimerkiksi muuntamalla elektroniikkapiireissä olevaa informaatiota valon kantamaksi.

Professori Mika Sillanpään johtaman tiimin kehittämä ratkaisu on yksi maailman tarkimpia mikroaaltojen mittauslaitteita. Laitteella voidaan myös siirtää kvantti-informaatiota taajuudelta toiselle ja samalla vahvistaa sitä.

- Tällä tavoin voitaisiin siirtää informaatiota vaikkapa suprajohtavista kvanttibiteistä näkyvän valon alueen ’lentäviin kubitteihin’ ja takaisin, kuvaavat laitteen teorian luoneet professori Tero Heikkilä ja akatemiatutkija Francesco Massel.

Menetelmää voidaan soveltaa esimerkiksi hybrideissä optiikkaa ja mikroaaltoja yhdistävissä järjestelmissä, joista voi luoda keskittimen kvanttitason signaaleille.

Myös Polytechnique Montréalin ja Ranskalaisen CNRS:n tutkijoiden työ vie meidät hieman lähemmäksi aikaa, jolloin informaatiota siirretään kvanttiperiaatteilla. Tutkijoiden saavutus oli luoda kubitteja sinkkiselenidissä, mikä mahdollistaa tuottaa rajapinnan kvanttifysiikan ja valonnopean informaation siirron välillä.

Elektronin jättämän aukon spinistä voidaan muodostaa kubitti. Ja erityisesti sinkkiselenidissä toteutettu ympäristö suojaa tällaista kubittia ja auttaa säilyttämään sen kvantti-informaation pidempään.

Tässä työssä lasereilla toteutetut operaatiot tuottivat informaation kvanttisiirron kiinteän kiteeseen vangitun kubitin ja lentävien kubittien eli fotonien välillä. Tekniikka osoittaa, että on mahdollista luoda kubitti nopeammin kuin aiemmin käytetyt menetelmät. Vain satakunta pikosekuntia riittää siirtyä lentävästä kubitista staattiseen kubittiin ja päinvastoin.

Veijo Hänninen

Nanobittejä 15.12.2016

Tiedätkö, mikä on pistotulppa?

Sikaa sanotaan usein töpselikärsäksi, vaikka sähköinsinöörille nimitys on kauhistus: sian kärsähän näyttää pistorasialta, ei töpseliltä. Puhekielessä töpselit ja pistorasiat menevätkin välillä sekaisin, mutta alan oppimateriaalissa, käyttöohjeissa ja toimitetussa mediassa tulisi pyrkiä oikeiden ja täsmällisten termien käyttöön. Pistokytkimiin liittyvistä termeistä on olemassa kansallinen standardi SFS 5805, joka uudistui toukokuussa. Edellinen standardi oli vuodelta 1996.

Lue lisää...

Kuinka älykellon tehopiiri kutistetaan?

Yleisin puettava laite on älykello tai fitnessranneke. Niiden arkkitehtuuriin kuuluu toiminnallisia lohkoja, kuten ympäristön ja biometrinen aistiminen, langaton yhteys ja mikro-ohjain. Tämä on johtanut uuden standardin tehokomponentin, microPMIC-piirin kehittämiseen, joka tuottaa anturien, radioiden ja prosessorin vaatimat erilaiset tehosyötöt. Se säästää aikaa, tilaa ja kustannuksia.

Lue lisää...
 
ETN_fi RT @Kwikman: World's first autonomous maritime ecosystem, Sauli Eloranta Rolls-Royce #ddayfi #RebootFinland https://t.co/DopdH7pzQ3
ETN_fi RT @Kwikman: Invitation to build world's first level 5 self driving system #ddayfi #RebootFinland https://t.co/CueAUztf0m
ETN_fi RT @AutomatedbusFI: Pekka Möttö , CEO of @Tuupapp is explaining how to build #Maas for customers #ddayfi #RebootFinland https://t.co/ZuBrx0
ETN_fi 4K-elokuvaa langattomasti. @latticesemi delivers first #4K UHD wireless video solution in the 60 GHz band. https://t.co/coXt8e30Ju
ETN_fi Ethernet is an old man :). 44 years old to be exact. https://t.co/bLmLWpHiWg
 

ny template