JavaScript is currently disabled.Please enable it for a better experience of Jumi.

Puolijohdemateriaalien tutkijat etsivät täydellistä materiaalia ja tapaa muokata sitä saadakseen siihen täsmälleen oikean elektronisen tai optisen aktiivisuuden eli kaistaeron, joka tarvitaan tietylle sovellukselle. Nyt amerikkalaistutkijat ovat löytäneet tällaisen menetelmän.

Kun elektroniikan rakenteet ovat kutistuneet lähes atomien tasolle, niitä ei voi enää saada paljon pienemmiksi. Tämän ongelman kiertämiseksi tutkijat etsivät keinoja hyödyntää nanomittakaavan atomiklusteriryhmien uniikkeja ominaisuuksia - joita kutsutaan kvanttipisteiden superhiloiksi. Niihin tukeutuen voisi rakentaa seuraavan sukupolven elektroniikkaa.

Kalifornian yliopiston Santa Barbaran yksikössä yhteistyötutkimus on saavuttanut merkittävää edistystä tarkkojen superhilamateriaalien suhteen. Työssä käytettiin keskitettyä elektronisädettä suurialaisen kvanttipisteisen superhilarakenteen valmistamiseksi. Siinä kaikilla kvanttipisteillä on tietty ennalta määrätty koko ja tarkka paikka kaksiulotteisen puolijohtavalla molybdeenidisulfidikalvolla (MoS2).

Elektronisäteen vuorovaikutus MoS2:n kanssa muuttaa tarkoitetut alueet puolijohtavasta metalliseksi. Näin muodostuneet kvanttipisteet voidaan sijoittaa alle neljän nanometrin etäisyydelle toisistaan siten, että niistä tulee keinotekoinen kide. Täten syntyy uudenlainen 2D-materiaali, jossa kaista-aukkoa voidaan määrittää kuin tilauksesta välillä 1,8-1,4 elektronivolttia (eV).

Tämä on ensimmäinen kerta, kun tiedemiehet ovat luoneet suurialaisen 2D-superhilan - nanomittakaavan atomiklusterit järjestyneessä ruudukossa - atomisesti ohueen materiaaliin, jolla kvanttipisteiden kokoa ja sijaintia hallitaan.

Prosessia voidaan soveltaa myös suoraan laajamittaiseen kvanttipistesuperhilan valmistamiseen. Kvanttipisteisiä superhiloja on tutkittu aiemminkin tässä tarkoituksessa mutta ne on tehty alhaalta ylöspäin -menetelmillä, joissa atomit yhdistyvät luonnollisesti ja spontaanisti makro-objektin muodostamiseksi. Näillä menetelmillä on kuitenkin vaikea saada hilarakenne halutunlaiseksi.

Tutkijoiden ylhäältä alas lähestymistapa voittaa satunnaisuuden ja sillä saa superhilan pisteet niin lähelle toisiaan, että elektronit ovat yhteen kytkeytyneitä. Tämä on tärkeä vaatimus kvanttilaskentaa kehitettäesä.

Veijo Hänninen

Nanobittejä 9.10.2017

 

 
 

Näin lataat sähköauton turvallisesti kotipistorasiasta

Sähköautoiluun liittyy paljon ennakkoluuloja ja virheellisiä käsityksiä. Yksi näistä liittyy sähköauton lataamiseen: voiko sähköauton ladata tavallisesta kotitalouspistorasiasta, vai pitääkö sähköauton ostajan ehdottomasti ostaa ja asennuttaa erillinen latauslaite? Molempia mielipiteitä esiintyy, ja totuus on tältä väliltä: tavallisesta pistorasiasta voi hyvin ladata, kunhan muistaa muutaman turvallisuusseikan.

Lue lisää...

UPS on tärkeä osa datan tallennusta

Innovatiiviset UPS-suunnittelutekniikat tuovat sekä paremman tehokkuuden että suorituskykyä.

Lue lisää...
 
ETN_fi What is Mindsphere IoT by Siemens?. Ilmari Veijola explains at ECF2018. https://t.co/PczsxwpCO4 @SiemensSuomi @ETN_fi
ETN_fi You dont need code to create an Android app. It can be done on Simulink and MATLAB models. See Antti Löytynoja at E… https://t.co/VJzXEfJoOM
ETN_fi See the @MinimaProcessor presentation at ECF18: https://t.co/m1znHqgj2E
ETN_fi Cut the power in IoT processors. @MinimaProcessor at Embedded Conference Finland 2018.
ETN_fi LTE-broadcast sopii autojen V2X-yhteyksiin. https://t.co/F8IgZpVhis
 
 

ny template