JavaScript is currently disabled.Please enable it for a better experience of Jumi.

Kalifornian teknillisen korkeakoulun ja Karlsruhen teknisen tutkimuslaitoksen yhteinen tutkijaryhmä on tehostanut ohutkalvoisten aurinkokennojen tehokkuutta jäljittelemällä mustien ruusuperhosten siipien arkkitehtuuria.

Aurinkokennojen tehokkuutta on yritetty parantaa kehittämällä laitteistoja, joiden avulla kenno voi seurata auringon liikettä. Tämä on vain ollut varsin kallis tapa ratkaista asia. Nyt tutkijat ottivat inspiraatiota ruusuperhosesta, jonka pehmeät mustat siivet lämmittävät kylmäveristä hyönteistä viileiden jaksojen aikana.

Tutkijat havaitsivat, että siivet muodostuivat reikämäisistä rakenteista. Näin siivet tulevat kevyemmiksi mutta havaittiin myös, että reiät sirottivat valoa, minkä ansiosta perhonen absorboi enemmän auringon lämpöä.

Bioteknisistä nanorakenteista innostuneet tutkijat loivat samanlaisia rakenteita laboratoriossaan käyttäen amorfisia piiarkkeja. Arkin pienet reiät eri kokoisina aiheuttivat valon siroamisen ja osumisen piin pohjarakenteeseen.

Rakenteen ansiosta piille saattiin karkeasti kaksi kertaa enemmän valoa kuin aikaisemmissa malleissa. Ryhmän mukaan kennojen luominen oli nopeaa ja helppoa.

Yaeln yliopistossa aurinkokennon tehoa on yritetty puolestaan parantaa diatomilla eli piilevällä. Kyse on levästä, joka uusiutuu tehokkaasti ja jota kutsutaan meren jalokiviksi. Ne tunnetaan kyvystään manipuloida valoa.

Yalen tutkijat halusivat hyödyntää tätä ominaisuutta aurinkoteknologian edistämiseksi. Se voikin osoittautua erityisen arvokkaiksi orgaanisen aurinkoteknologian suunnittelussa.

Yksi haaste näiden laitteiden suunnittelussa on, että ne tarvitsevat erittäin ohuita aktiivisia kerroksia (100-300 nanometriä), mikä rajoittaa niiden muunnostehokkuutta. Tämän korjaamiseksi niihin on sisällytettävä nanorakenteita, jotka ansoittavat ja sirottavat valoa absorptiotasojen parantamiseksi. Nämä lähestymistavat ovat kuitenkin liian kalliita laajamittaiselle tuotannolle.

Tutkijat sijoittivat hienonnettua piilevää aurinkokennon aktiiviseen kerrokseen. Tällä tavoin ne pienensivät aktiivisen kerroksen tarvitseman materiaalin määrää, mutta säilyttivät rakenteen sähköntuoton samalla tasolla.

Veijo Hänninen

Nanobittejä 26.10.2017

 
 

LTE-mikroverkot tuovat yhteydet jopa kaivokseen

Erityisesti teollisuuden tarpeisiin sopivat LTE-mikroverkot ovat vähitellen siirtymässä pilottikohteista tuotantokäyttöön. Teknologia tarjoaa teollisuudelle uudenlaisia mahdollisuuksia, hyvää käytettävyyttä ja vahvaa tietoturvaa.

Lue lisää...

Koko järjestelmää voidaan simuloida kerralla

Simulointi on perusedellytys monimutkaisen järjestelmän onnistuneelle suunnittelulle, kehittämiselle ja testaamiselle. Yhdistämällä Wind Riverin Simicsin kaltainen tietokoneen simulointiohjelmisto fyysisen järjestelmän ja ympäristön simulaatioon voidaan koko järjestelmän kattavia testejä ajaa täysin automaattisesti niin usein kuin halutaan.

Lue lisää...
 
ETN_fi Thaimaan luolapelastusoperaatiossa käytettiin MaxMesh-verkkotekniikkaa, joka perustui Analog Devicesin AD9364-piire… https://t.co/eVFbYcblRg
ETN_fi Älä käytä verkkopankkia julkisilla laitteilla tai wifillä! https://t.co/oghm4QvzPj
ETN_fi Tämän takia Linux ei valtaa työpöytiä https://t.co/GmLMkZ7C1q
ETN_fi The 1st ever ETNdigi is out! Ensimmäinen ETNdigi ilmestyi – lue vankka paketti IoT-tekniikasta https://t.co/AeNPCRgufC
ETN_fi What is Mindsphere IoT by Siemens?. Ilmari Veijola explains at ECF2018. https://t.co/PczsxwpCO4 @SiemensSuomi @ETN_fi
 
 

ny template