JavaScript is currently disabled.Please enable it for a better experience of Jumi.

Kvanttifysiikan parissa on pitkään ajateltu, ettei lomittumista voi esiintyä atomeja tai molekyylejä suurempien kappaleiden välillä. Aalto-yliopiston professori Mika Sillanpään johtama tutkijaryhmä on kuitenkin nyt osoittanut saaneensa kaksi lähes paljaalla silmällä havaittavaa, liikkuvaa kappaletta lomittuneeseen kvanttitilaan, jossa ne tuntevat toisensa haamuvuorovaikutuksen välityksellä. Kokeissa käytettiin kahta värähtelevää, alumiinista piisirulle valmistettua rumpukalvoa.

- Menetelmässä värähtelevät kappaleet saadaan lomittuneeseen kvanttitilaan suprajohtavan, mikroaaltotaajuisen antennin avulla. Sähkömagneettiset kentät toimivat alustana, joka imee rumpukalvojen liikkeestä lämpöhäiriöitä ja jättää jäljelle heikot kvanttimekaaniset värähtelyt, selittää Mika Sillanpää.

Mittaukset tehtiin lähellä absoluuttista nollapistettä (-273,15 °C) ja rumpukalvot saatiin pysymään lomittuneessa kvanttitilassa jopa puoli tuntia. Alkeishiukkasille tehdyissä mittauksissa lomittuminen on kestänyt vain sekunnin murto-osia.

Tulevaisuudessa lomittuneita rumpukalvoja voi käyttää kvanttiteknologiaa hyödyntävissä laitteissa esimerkiksi reitittiminä tai herkkinä antureina. Ne voivat myös edistää perustutkimusta kvanttimekaniikan ja painovoiman huonosti ymmärretystä yhteydestä.

Työhön osallistui tutkijoita Aalto-yliopiston lisäksi University of New South Wales Canberrasta, University of Chicagosta sekä Jyväskylän yliopistosta.

Arkansasin, Wisconsin ja Dartmouthin yliopistojen tutkijoista koostunut ryhmä on puolestaan kehittänyt uuden menetelmän yksittäisten fotonien eli valohiukkasten havaitsemiseksi käyttäen kvanttipisteitä. Yksittäisen fotonin havaitseminen on keskeinen tekijä kvantti-informaation kehityksessä. Tekniikalla olisi myös muita sovelluksia, kuten biologiset ja lääketieteelliset kuvaukset, spektroskopia ja tähtitieteelliset havainnot.

Kvantti-informaatio käyttää hiukkasten eri kvanttitiloja, kuten polarisaatiota tai vaihetta, koodaamaan informaatiota. Koska se ei rajoitu ykkösiin ja nolliin, tekniikka voi siirtää suurenkin määrän informaatiota turvallisesti.

Kun yksittäinen fotoni siirtyy ilmaisimeen, sen vaikutus on niin pieni, että sitä on vaikea havaita. Muut fotoninilmaisimien mallit ratkaisevat ongelman käyttämällä vyörytoimista valodiodia virran tai jännitteen vahvistamiseksi, mutta tämä lähestymistapa yleensä lisää havaitsemisen viivettä ja lisää taustakohinaa.

Uudessa lähestymistavassa tutkijat käyttävät kvanttipistettä yksittäisten fotonien havaitsemiseksi. Muihin menetelmiin verrattuna yksittäisen fotonin aiheuttama jännitteen muutos tässä ilmaisimessa on suuri ja sillä on alhainen taustakohina.

Veijo Hänninen
Nanobittejä 3.5.2918

 
 

LTE-mikroverkot tuovat yhteydet jopa kaivokseen

Erityisesti teollisuuden tarpeisiin sopivat LTE-mikroverkot ovat vähitellen siirtymässä pilottikohteista tuotantokäyttöön. Teknologia tarjoaa teollisuudelle uudenlaisia mahdollisuuksia, hyvää käytettävyyttä ja vahvaa tietoturvaa.

Lue lisää...

Koko järjestelmää voidaan simuloida kerralla

Simulointi on perusedellytys monimutkaisen järjestelmän onnistuneelle suunnittelulle, kehittämiselle ja testaamiselle. Yhdistämällä Wind Riverin Simicsin kaltainen tietokoneen simulointiohjelmisto fyysisen järjestelmän ja ympäristön simulaatioon voidaan koko järjestelmän kattavia testejä ajaa täysin automaattisesti niin usein kuin halutaan.

Lue lisää...
 
ETN_fi Thaimaan luolapelastusoperaatiossa käytettiin MaxMesh-verkkotekniikkaa, joka perustui Analog Devicesin AD9364-piire… https://t.co/eVFbYcblRg
ETN_fi Älä käytä verkkopankkia julkisilla laitteilla tai wifillä! https://t.co/oghm4QvzPj
ETN_fi Tämän takia Linux ei valtaa työpöytiä https://t.co/GmLMkZ7C1q
ETN_fi The 1st ever ETNdigi is out! Ensimmäinen ETNdigi ilmestyi – lue vankka paketti IoT-tekniikasta https://t.co/AeNPCRgufC
ETN_fi What is Mindsphere IoT by Siemens?. Ilmari Veijola explains at ECF2018. https://t.co/PczsxwpCO4 @SiemensSuomi @ETN_fi
 
 

ny template