logotypen
 
 

IN FOCUS

Suojaa datasi kunnolla

SSD-levyt tarjoavat luontaisesti korkean luotettavuuden kaikentyyppisiin sovelluksiin, aina aloitustason kuluttajalaitteista kriittisiin järjestelmiin. Asianmukaiset tietosuojamekanismit voivat maksimoida levyn käyttöiän toteuttamalla ennaltaehkäiseviä toimenpiteitä tarpeen mukaan, kertoo Silicon Motion artikkelissaan.

Lue lisää...
" "

FPGA-pohjaisten kiihdyttimien suunnittelu ja toteuttaminen ei tapahdu aivan käden käänteessä. Tarvitaan sovelluksen, infrastruktuurin ja RTL-suunnittelun kokonaisvaltaista yhteensovittamista. Kiihdytinsovelluksissa pääpaino on kiihdytinalgoritmeissa, jotka käsittävät useita monimutkaisia sekvenssejä. Onneksi kiihdyttimien integrointiin on nyt helpompi tie.

Artikkelin ovat kirjoittaneet Intelin Enno Luebbers, Song Liu ja Michael Chu

Suunnittelijat tavallisesti suunnittelevat kaikki tiedonsiirron yhteydet FPGA:n fyysisten ja loogisten kerrosten välillä sekä tarvittavan ohjelmiston prosessorille alusta lähtien ohjelmoimalla. Toinen vaihtoehto on käyttää valmiita IP-kirjastoja ohjelmoinnissa. Kumpikin tapa vaatii vielä paljon integrointia kiihdytettävien algoritmin osien RTL-suunnittelun lisäksi.

Kun yhä enemmän FPGA-piirejä käytetään pilvi- ja datakeskussovelluksissa koneoppimisessa, tarvetta on tehtävää helpottaville standardeille ja sovelluskehyksille. Open Programmable Acceleration Engine (OPAE) on yksi avoimista yhteisöistä, jonka pyrkimyksenä on yksinkertaistaa ja virtaviivaistaa FPGA-piirien integrointia kiihdytinsovelluksia varten.

OPAE koostuu useista ohjelmistokomponenteista, ajureista ja sovellusten käyttäjätilan API-liitännöistä. OPAE:n kevytversio edustaa yhtenäistä, kerrostettua rekonfiguroitavien kiihdyttimien ohjelmointiin perustuvaa mallia, joka tarjoaa yleisiä ja laajennettavissa olevia metodeja kiihdytinresurssien kehittämiseen, allokointiin, käyttöoikeuksiin ja hallintaan. Käyttöoikeudet ohjelmistopinoon on toteutettu eri kerroksissa testaamisen, kasvattamisen ja käyttämisen helpottamiseksi. Käyttäjän API-tasolla OPAE tarjoaa abstraktiot resurssien käyttöoikeuksien ja hallinnan yksinkertaistamista varten ilman merkittävää vaikutusta suorituskykyyn. Tämän lähestymistavan ansiosta järjestelmäintegraattorien, ohjelmistokehittäjien ja kiihdytinsuunnittelijoiden ei tarvitse tehdä perus-FPGA-komponenttien uudelleen sovitusta rekisterihakuja, jaettua muistia, synkronointia ja rekonfigurointia varten. OPAE:n avulla suunnittelija voi valita abstraktiotason ja ohjauksen järjestämällä sovellusliitännät kaikkialle ohjelmistopinoon.

Kuvan 1 mukainen kokonaisvaltainen järjestelmäpino on lähestymistapa, jota tarvitaan aikaansaamaan kerrostettu yhteysmalli FPGA:n kiihdyttämisessä eri laitteissa, käyttöjärjestelmissä ja sovelluskohteissa. FPGA:n toteuttamisessa tarvitaan tällöin ajureita, käyttäjätilan API-liittymiä, sovelluskehyksiä ja sovelluskohtaisia kirjastoja.

Kuva 1. Intelin Xeon-palvelinprosessorin ja FPGA:n yhteydessä käytettävä kiihdytinpino.

Kiihdyttimen laitteistoresurssit, jotka koostuvat FPGA-piireistä, liitännöistä ja kehyslogiikasta, muodostavat alimman kerroksen ja ne on tavallisesti yhdistetty prosessoriin standardeilla järjestelmäväylillä osoitteen käännöslogiikkoineen ja välimuistihierarkioineen. OPAE:lla ei ole vaikutusta liitäntäteknologiaan tai topologiaan. Se kuitenkin edellyttää, että ohjelmoitava logiikka käyttää ohjelmistoilla toimivia datarakenteita laitteistokomponenttien ja resurssien tunnistamiseen ja tilastoimiseen. Rekonfiguroitavien laitteistoresurssien fyysinen yhteysliitäntä ei tavallisesti ole suoraan sovellusten käytettävissä.

Kuva 2. OPAE:n kerrokset ja komponentit.

Joukko ajureita on järjestelmän yhteysväylän yläpuolella ja ohjelmoitavat laitteistoresurssit kytkevät ja integroivat kiihdytinresurssit käyttöjärjestelmän laitteistohallintaan, näin ollen mahdollistaen perusyhteyskäytännöt käyttäjätilan sovelluksiin. Ajurikerroksen tärkeänä tehtävänä on varmistaa perusyhteyskäytäntöjen oikea toiminta järjestelmän integriteetin takaamiseksi, samoin kuin taustalla toimivien kriittisten hallintotehtävien kuten virheen-, tehon- ja lämmönhallinnan suorittaminen. Ajurin käyttäjän määriteltävissä olevien tilojen API on yhä käyttöjärjestelmästä ja laitteistosta riippuvainen.

Jotta laitteiden, alustojen ja käyttöjärjestelmien välisen siirrettävyyden edut saadaan käyttöön samalla kun voidaan tarkasti ohjata yksittäisiä resursseja, OPAE tarjoaa läpinäkyvällä käyttäjätilan kirjastolla (libopae-c) toteutetun C API -kerroksen, joka on liitettävissä laiteajurin API-rajapintaan alemman abstraktiotason kiihdytinresurssien toteuttamiseksi ja joka mahdollistaa näiden resurssien luetteloinnin, käyttöoikeuden ja hallinnan. Etenkin abstraktiomallin komponenttien tarjoaman ratkaisut ovat vielä jossain määrin FPGA-teknologiasta riippuvaisia, mutta niillä voidaan ilmaista halutun tasoisesti suuri joukko kiihdytinresursseja, alustoja ja käyttöalueita.

Integroimalla FPGA-ohjelmistopino standardoituihin ohjelmistokirjastoihin ja sovelluskehyksiin (esimerkiksi lineaarialgebran, syväoppimisen, salauksen, kompressoinnin ja muihin yleisiin toimintoihin) on mahdollista suoraan (läpinäkyvästi) kiihdyttää suurta määrää sovelluksia ja yksinkertaistaa toteutuksia erilaisissa käyttökohteissa, koska yksittäisten sovellusten ei tarvitse olla tekemisissä yksittäisten kiihdytinasteiden kanssa perustason tiedonsiirrosta puhumattakaan.

FPGA-pohjainen kiihdytinlaitteisto

OPAE-ajuri ja API-kirjastokerrokset koostetaan yksityiskohtaisista laitteistospesifikaatioista, joista saadaan tieto tiedonsiirtoyhteyksien määristä ja tyypeistä, hallintametodeista ja rekonfiguraatioiden käsittelytavoista. Pohjana olevan FPGA-laitteistoalustan on minimissään pystyttävä tarjoamaan infrastruktuuri näiden resurssien kehittämistä, allokointia ja yhteyskäytäntöjä varten.

Kuva 3. FPGA-ajuri.

FPGA-ajuriarkkitehtuuri määrittelee yksittäiset alusta-ajurit hallintatoimintoihin, kuten rekonfiguraation ja kiihdyttimen yhteyskäytäntöihin. Edellinen liittyy FPGA-hallintalogiikkaan, kun taas jälkimmäinen hoitaa yleisten käytäntöjen mukaiset tiedonsiirtoyhteydet FPGA-lohkoon ohjelmoituun kiihdyttimeen. FPGA-ajurikerroksen tehtävänä on tasoittaa alla olevasta laitteistoarkkitehtuurista aiheutuvia vaihteluita, jolloin on mahdollista käyttää useampia eri liitäntäteknologioita ja säilyttää samalla järjestelmän integriteetti ja stabiilius. Joustavuuden lisäämiseksi FPGA-ajuri on segmentoitu pääajuriksi ja useiksi osa-ajureiksi. Pääajuri etsii ja tunnistaa FPGA-laitteita ja sen jälkeen aikaansaa vuorovaikutuksen yksittäisiin osa-ajureihin perustuen tunnistettuun laitteeseen liittyvään laiteosien toimintojen luetteloon.

FPGA:n API-liitäntä

Koodaajalle käytettävissä oleva API-liitäntä noudattaa kiihdytinresurssien oliopohjaista mallinnuskuviota siihen liittyvine toimintoineen. Toteutus on kuitenkin kirjoitettu C:llä, jotta minimoidaan piirikuvion vaatima ala ja sen vaikutus sovelluksiin.

OPAE C API on mallinnettu kokoelmasta perusobjekteja, joilla kuvataan, identifioidaan ja referoidaan FPGA-resursseja. On syytä korostaa, että tässä kuvatut API:t muodostavat peruspaketin, joka on sovitettavissa useimpiin ohjelmistojärjestelmiin liitettäviin FPGA-kiihdyttimiin. API:n avulla voidaan myös mallintaa laitteisto- tai alustaspesifisiin laajennuksiin erityisiä kohdearkkitehtuurien erityisominaisuuksia. Esimerkkinä voidaan mainita alustaspesifinen API-laajennus, joka toimii pieniviiveisenä ilmoitusmekanismina Intelin Xeon-prosessorin yhtenäisen muistiväylän ja integroitujen FPGA-piirien välillä.

Kuva 4. OPAE C API:n olio- ja ohjauskaavio.

Kuvassa 4 esitetään tyypillinen API-perustaisten toimintojen etenemiskaavio sovelluksessa, joka haluaa käyttää ja saada käyttöoikeudet tiettyyn kiihdyttimeen. Aluksi sovellus luo ominaisuuksia kuvaavan olion, joka määrittelee etsittävän olion tunnuspiirteet ja joka siirretään fpgaEnumerate()-kutsuun sisältäen joukon symboleita, joilla identifioidaan yksittäiset resurssipyynnöt. Symbolin pitäminen hallussa ei merkitse siihen liittyvän resurssin omistamista. Symbolin valitsemisen jälkeen sovellus tekee kutsun fpgaOpen() hankkiakseen omistukseensa resurssin, joka puolestaan luovuttaa pidikkeenä toimivan kahvaosoittimensa. Tällä osoittimella voidaan kutsua yksittäisiä API-toimintoja ajantasaisesti ottamaan yhteyttä FPGA-kiihdyttimeen esimerkiksi kiihdyttimen uudelleen asettamista, ohjausrekisterien lukua ja kirjoitusta tai jaetun muistin allokointia varten. Lopulta fpgaClose() sammuttaa kahvaosoittimen ja purkaa resurssin omistuksen.

Sovelluskehyksen integrointi

Vaikka API:n tarjoamat perusresurssiabstraktiot helpottavat sovellusten tekoa erilaisille käyttöjärjestelmille ja alustoille, sovelluskehittäjä joutuu miettimään, miten resurssien käyttöoikeudet hoidetaan. Yksi lähestymistapa OPEA:a käytettäessä on integroida FPGA-kiihdytinresurssit lausekielisiin sovelluskehyksiin ja kirjastoihin. Tällä tavoin sovellusten ei tarvitse tietää kiihdytinresurssien yhteydenoton määrittelyjä ja tällöin kiihdytintoiminnot pysyvät läpinäkyvinä. Lausekielisten kirjastojen avulla saavutettava läpinäkyvyys FPGA-kiihdyttimissä tarjoaa etuja esimerkiksi kuvantunnistuksen, data-analytiikan ja datakompression tapaisissa sovelluskohteissa.

FPGA-sovellusten suunnittelu vaatii erikoisosaamista ja kykyä kohdata haasteita. OPAE:n avulla FPGA-pohjaisten kiihdytinratkaisujen kehitystyötä ja toteuttamista voidaan helpottaa merkittävästi. Tällöin yhä useampi suunnittelija voi keskittyä datakeskuksissa monimutkaisten datankäsittelysovellusten nopeuttamiseen.

MORE NEWS

Infineon sai vihreää valoa Dresdenin uudelle tehtaalle

Infineon Technologies on saanut Saksan liittovaltion talousministeriöltä lopullisen rahoituspäätöksen uuden, huipputeknologiaan keskittyvän puolijohdetehtaan rakentamiseksi Dresdeniin. Yritys investoi Smart Power Fab -nimiseen tuotantolaitokseen yli viisi miljardia euroa omia varojaan. Hanke tuo arviolta 1000 uutta työpaikkaa alueelle.

Nokian uusi kuituratkaisu korvaa kuparikaapelit

Nokia on julkistanut uuden Aurelis Optical LAN -ratkaisunsa, joka tarjoaa yrityksille kehittyneen ja pitkäikäisen vaihtoehdon perinteisille kuparipohjaisille lähiverkoille. Uusi kuitutekniikka vähentää merkittävästi kaapelointia ja energiankulutusta, tarjoten samalla huippunopeaa ja luotettavaa verkkoyhteyttä tulevaisuuden tarpeisiin.

Aurinkosähköä rakennettiin ennätysmäärä viime vuonna

Viime vuonna maailmassa rakennettiin ennätykselliset 597 gigawattia (GW) uutta aurinkosähkökapasiteettia, selviää SolarPower Europen tuoreesta Global Market Outlook for Solar Power 2025–2029 -raportista. Kasvua edellisvuodesta kertyi peräti 33 prosenttia, mikä tekee vuodesta 2024 historian parhaan aurinkosähkön asennusvuoden.

EU saa oman alustan piirien suunnitteluun

Euroopan unioni panostaa vahvasti puolijohteiden kehitykseen ja ottaa uuden askeleen kohti teknologista omavaraisuutta. Belgialaisen tutkimuskeskus Imecin johdolla käynnistyy European Chips Design Platform -niminen hanke, jonka tavoitteena on luoda yhteiseurooppalainen alusta integroitujen piirien suunnitteluun.

Uusi atomikello jätättää sekunnin 100 miljoonassa vuodessa

Yhdysvaltain kansallinen standardi- ja teknologiainstituutti (NIST) on ottanut käyttöön uuden sukupolven atomikellon, joka määrittää ajan ennenäkemättömällä tarkkuudella. NIST-F4-nimeä kantava kellojärjestelmä pystyy käymään virheettömästi jopa 100 miljoonan vuoden ajan heittäen enintään sekunnin.

Euroopan komponenttikauppa odottaa vieläkin käännettä kasvuun

Euroopan komponenttien jakelumarkkinoilla ei vieläkään näy merkkejä käänteestä parempaan. DMASS Europen tuoreiden tilastojen mukaan vuoden 2025 ensimmäinen neljännes toi mukanaan tuntuvan 14,3 prosentin laskun koko markkinalle, ja kokonaismyynti jäi 3,92 miljardiin euroon. Erityisesti puolijohteet jatkoivat jyrkkää laskuaan, romahtaen lähes 20 prosenttia 2,37 miljardiin euroon.

Kontronilla erinomainen alkuvuosi

Kontron aloitti vuoden 2025 vahvasti, raportoidessaan merkittävää kasvua kannattavuudessa ja tilauskannassa. Samalla yhtiö laajentaa IoT-tuotevalikoimaansa uudella LTE-yhteyksiä hyödyntävällä teollisuuslaitteella.

Nopeutuvat signaalit vaativat parikaapelilta yhä enemmän

Signaalinsiirron kehitys kiihtyy – kirjaimellisesti. Uusimmat datakeskus- ja verkkosovellukset siirtyvät käyttämään jopa 224 Gbps PAM4 -modulaatiota, jossa jokainen bittikanava kuljettaa neljää jännitetasoa äärimmäisen tiiviissä aikakehyksessä. Tällainen signalointi vaatii kaapeleilta ennen näkemätöntä tarkkuutta.

MEMS-pohjainen tahdistus tulee nyt älypuhelimeen

Piilaaksolainen SiTime tuo markkinoille ensimmäisen mobiilikäyttöön suunnitellun MEMS-kellopiirin, joka haastaa perinteiset kvartsikiteet älypuhelimissa.

Tilaäänikoodekki on hyvä esimerkki uudesta Nokiasta

Maailman ensimmäinen tilaäänipuhelu kuulostaa tieteiselokuvalta – mutta se on todellisuutta. Kesällä 2024 Nokia esitteli uuden Immersive Voice -teknologian avulla toteutetun puhelun, jossa ääni ei vain kuulu, vaan ympäröi kuulijan kuin keskustelukumppani olisi fyysisesti läsnä. Tämän mahdollisti uusi 3GPP-standardiin hyväksytty IVAS-koodekki (Immersive Voice and Audio Services), joka vie mobiiliviestinnän täysin uudelle tasolle.

Tinahiukkaset anodissa vauhdittavat latausta ja kasvattavat energiatiheyttä

Eteläkorealaiset tutkijat ovat kehittäneet uudenlaisen akun anodimateriaalin, joka yhdistää nopean latauksen, suuren energiatiheyden ja pitkän käyttöiän – läpimurto voi mullistaa sähköautojen ja energiavarastojen markkinat.

Kännykkämarkkina kasvoi vain 3 prosenttia alkuvuonna

Älypuhelinmarkkinoiden globaali kasvu jäi vaatimattomaksi vuoden 2025 ensimmäisellä neljänneksellä, kertoo tutkimusyhtiö Counterpoint Research tuoreessa raportissaan. Markkinatulot nousivat vain 3 prosenttia vuoden takaisesta, mikä vastaa kasvua myös toimitusmäärissä.

Uuden polven SiC-tekniikka kutistaa sähköauton invertterin

Infineon esittelee tehoelektroniikan PCIM-messuilla Nürnbergissä uraauurtavan piikarbidikomponentin, joka tehostaa sähköautojen vetojärjestelmiä – pienemmät, kevyemmät ja energiatehokkaammat invertterit ovat askeleen lähempänä.

Nokian privaattiverkko seuraa jatkossa Maerskin rahtilaivoja

Nokia on solminut merkittävän sopimuksen tanskalaisen logistiikkajätti Maerskin kanssa toimittaakseen privaattiverkkoratkaisunsa yhtiön 450 rahtialukseen. Kyseessä on osa Maerskin uutta IoT-alustaa, OneWirelessia, jonka tavoitteena on parantaa reaaliaikaista rahtiseurantaa, toimitusketjun näkyvyyttä ja operatiivista tehokkuutta.

Piinanolanka-akku siirtyy vihdoin tuotantoon

Kalifornialainen vuonna 2008 perustettu Amprius Technologies on valmis siirtymään sarjatuotantoon uudenlaisen akkukenno­tekniikkansa kanssa. Yhtiön "Sicore"-niminen kenno käyttää pii-nanopilareihin perustuvaa anoditeknologiaa ja saavuttaa huipputason energiatiheyden: 450 Wh/kg painon mukaan ja 950 Wh/l tilavuuden mukaan.

6G vaatii uutta radiotaajuussuunnittelua

Suomalaiset huippuyritykset ja tutkimuslaitokset ovat yhdistäneet voimansa uuden sukupolven mobiiliverkkojen kehittämiseksi. Oulun yliopiston vetämä RF ECO3 -hanke tähtää tulevaisuuden 6G-teknologian kriittiseen osa-alueeseen: tehokkaampaan ja kestävämpään radiotaajuussuunnitteluun.

Yksinkertainen ratkaisu kasvattaa sähköauton akun eliniän jopa 19-kertaiseksi

Korelaisten POSTECHin (Pohang University of Science and Technology) ja Sungkyunkwanin yliopiston tutkijat ovat löytäneet uuden tavan pidentää sähköautojen litiumioniakkujen käyttöikää jopa 19-kertaiseksi – ilman uusia materiaaleja tai teknologioita. Ratkaisu on yksinkertainen: siinä pitää välttää akun täydellistä tyhjentämistä.

GaN tekee moottorinohjauksesta tehokkaampaa

GaN-teknologian edelläkävijä Navitas Semiconductor on julkistanut uuden GaNSense Motor Drive IC -piirisarjan, joka mullistaa moottorinohjauksen tehokkuuden ja integraation. Uusi ratkaisu yhdistää kaksi galliumnitridi-FET-transistoria (GaN FET), ohjauksen, suojaukset ja virranmittauksen yhteen, täysin integroituun piiriin.

DigiKey alkaa myymään vakiotyökaluja

DigiKey on lanseerannut oman, yksinoikeudella myytävän tuotesarjansa nimeltä DigiKey Standard. Uusi vakiokomponenttien valikoima koostuu sähkö- ja elektroniikkasuunnittelun perustyökaluista ja tarvikkeista, jotka ovat heti saatavilla nopeaan toimitukseen.

Kuutiosentin kokoinen projektori AR-laseihin

Itävaltalainen teknologiayhtiö TriLite tuo markkinoille uuden, vallankumouksellisen Trixel 3 Cube -projektorin, joka esitellään ensi kertaa yleisölle Display Week 2025 -tapahtumassa San Josessa, Kaliforniassa. Trixel 3 Cube on maailman pienin ja kevyin laserkeilaukseen perustuva projektionäyttö.

Rekoistakin pitää tulla hiilivapaita

Maantiekuljetukset ovat elintärkeitä talouselämälle. Kuorma-autoilla kuljetetaan ruokaa, tarvikkeita, materiaaleja ja monia muita tavaroita mihin tahansa paikkaan. Vaikka keskiraskaiden ja raskaiden kuorma-autojen osuus maailman ajoneuvoista on vain neljä prosenttia, niiden osuus tieliikenteen hiilidioksidipäästöistä on 40 prosenttia, tehden niistä kasvihuonekaasupäästöjen päälähteen, joka on otettava huomioon pyrittäessä kohti hiilivapautta.

Lue lisää...

Kovaa käyttöä kestävät koneet voi ostaa palveluna

Kenttätyö vaatii kovia koneita – ja nyt ne saa palveluna. Panasonicin uusi Toughbook Mobile-IT As-A-Service (MaaS) -ratkaisu mullistaa tavan, jolla liikkuvaa työtä tukevat laitteet ja IT-palvelut hankitaan ja hallitaan. Ei enää isoja kertahankintoja, pitkiä IT-projekteja tai laitteiden elinkaaren miettimistä – nyt saat kaiken tarvittavan helposti ja kuukausimaksulla.

Lue lisää...

 

Tule tapaamaan meitä tulevissa tapahtumissamme.
R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.
 
R&S -seminaari: 6G
Oulussa 13.5.2025 (rekisteröidy)
Espoossa 14.5.2025 (rekisteröidy)
 
R&S -seminaari: Calibration
Tampereella 22.5.2025 (rekisteröidy)
 
R&S -seminaari: Aerospace & Defence Testing
Tampereella 5.6.2025. Tiedustelut asiakaspalvelu@rohde-schwarz.com
 

 

LATEST NEWS

NEW PRODUCTS

 
 
article