logotypen
 
 

IN FOCUS

Suojaa datasi kunnolla

SSD-levyt tarjoavat luontaisesti korkean luotettavuuden kaikentyyppisiin sovelluksiin, aina aloitustason kuluttajalaitteista kriittisiin järjestelmiin. Asianmukaiset tietosuojamekanismit voivat maksimoida levyn käyttöiän toteuttamalla ennaltaehkäiseviä toimenpiteitä tarpeen mukaan, kertoo Silicon Motion artikkelissaan.

Lue lisää...

FPGA-pohjaisten kiihdyttimien suunnittelu ja toteuttaminen ei tapahdu aivan käden käänteessä. Tarvitaan sovelluksen, infrastruktuurin ja RTL-suunnittelun kokonaisvaltaista yhteensovittamista. Kiihdytinsovelluksissa pääpaino on kiihdytinalgoritmeissa, jotka käsittävät useita monimutkaisia sekvenssejä. Onneksi kiihdyttimien integrointiin on nyt helpompi tie.

Artikkelin ovat kirjoittaneet Intelin Enno Luebbers, Song Liu ja Michael Chu

Suunnittelijat tavallisesti suunnittelevat kaikki tiedonsiirron yhteydet FPGA:n fyysisten ja loogisten kerrosten välillä sekä tarvittavan ohjelmiston prosessorille alusta lähtien ohjelmoimalla. Toinen vaihtoehto on käyttää valmiita IP-kirjastoja ohjelmoinnissa. Kumpikin tapa vaatii vielä paljon integrointia kiihdytettävien algoritmin osien RTL-suunnittelun lisäksi.

Kun yhä enemmän FPGA-piirejä käytetään pilvi- ja datakeskussovelluksissa koneoppimisessa, tarvetta on tehtävää helpottaville standardeille ja sovelluskehyksille. Open Programmable Acceleration Engine (OPAE) on yksi avoimista yhteisöistä, jonka pyrkimyksenä on yksinkertaistaa ja virtaviivaistaa FPGA-piirien integrointia kiihdytinsovelluksia varten.

OPAE koostuu useista ohjelmistokomponenteista, ajureista ja sovellusten käyttäjätilan API-liitännöistä. OPAE:n kevytversio edustaa yhtenäistä, kerrostettua rekonfiguroitavien kiihdyttimien ohjelmointiin perustuvaa mallia, joka tarjoaa yleisiä ja laajennettavissa olevia metodeja kiihdytinresurssien kehittämiseen, allokointiin, käyttöoikeuksiin ja hallintaan. Käyttöoikeudet ohjelmistopinoon on toteutettu eri kerroksissa testaamisen, kasvattamisen ja käyttämisen helpottamiseksi. Käyttäjän API-tasolla OPAE tarjoaa abstraktiot resurssien käyttöoikeuksien ja hallinnan yksinkertaistamista varten ilman merkittävää vaikutusta suorituskykyyn. Tämän lähestymistavan ansiosta järjestelmäintegraattorien, ohjelmistokehittäjien ja kiihdytinsuunnittelijoiden ei tarvitse tehdä perus-FPGA-komponenttien uudelleen sovitusta rekisterihakuja, jaettua muistia, synkronointia ja rekonfigurointia varten. OPAE:n avulla suunnittelija voi valita abstraktiotason ja ohjauksen järjestämällä sovellusliitännät kaikkialle ohjelmistopinoon.

Kuvan 1 mukainen kokonaisvaltainen järjestelmäpino on lähestymistapa, jota tarvitaan aikaansaamaan kerrostettu yhteysmalli FPGA:n kiihdyttämisessä eri laitteissa, käyttöjärjestelmissä ja sovelluskohteissa. FPGA:n toteuttamisessa tarvitaan tällöin ajureita, käyttäjätilan API-liittymiä, sovelluskehyksiä ja sovelluskohtaisia kirjastoja.

Kuva 1. Intelin Xeon-palvelinprosessorin ja FPGA:n yhteydessä käytettävä kiihdytinpino.

Kiihdyttimen laitteistoresurssit, jotka koostuvat FPGA-piireistä, liitännöistä ja kehyslogiikasta, muodostavat alimman kerroksen ja ne on tavallisesti yhdistetty prosessoriin standardeilla järjestelmäväylillä osoitteen käännöslogiikkoineen ja välimuistihierarkioineen. OPAE:lla ei ole vaikutusta liitäntäteknologiaan tai topologiaan. Se kuitenkin edellyttää, että ohjelmoitava logiikka käyttää ohjelmistoilla toimivia datarakenteita laitteistokomponenttien ja resurssien tunnistamiseen ja tilastoimiseen. Rekonfiguroitavien laitteistoresurssien fyysinen yhteysliitäntä ei tavallisesti ole suoraan sovellusten käytettävissä.

Kuva 2. OPAE:n kerrokset ja komponentit.

Joukko ajureita on järjestelmän yhteysväylän yläpuolella ja ohjelmoitavat laitteistoresurssit kytkevät ja integroivat kiihdytinresurssit käyttöjärjestelmän laitteistohallintaan, näin ollen mahdollistaen perusyhteyskäytännöt käyttäjätilan sovelluksiin. Ajurikerroksen tärkeänä tehtävänä on varmistaa perusyhteyskäytäntöjen oikea toiminta järjestelmän integriteetin takaamiseksi, samoin kuin taustalla toimivien kriittisten hallintotehtävien kuten virheen-, tehon- ja lämmönhallinnan suorittaminen. Ajurin käyttäjän määriteltävissä olevien tilojen API on yhä käyttöjärjestelmästä ja laitteistosta riippuvainen.

Jotta laitteiden, alustojen ja käyttöjärjestelmien välisen siirrettävyyden edut saadaan käyttöön samalla kun voidaan tarkasti ohjata yksittäisiä resursseja, OPAE tarjoaa läpinäkyvällä käyttäjätilan kirjastolla (libopae-c) toteutetun C API -kerroksen, joka on liitettävissä laiteajurin API-rajapintaan alemman abstraktiotason kiihdytinresurssien toteuttamiseksi ja joka mahdollistaa näiden resurssien luetteloinnin, käyttöoikeuden ja hallinnan. Etenkin abstraktiomallin komponenttien tarjoaman ratkaisut ovat vielä jossain määrin FPGA-teknologiasta riippuvaisia, mutta niillä voidaan ilmaista halutun tasoisesti suuri joukko kiihdytinresursseja, alustoja ja käyttöalueita.

Integroimalla FPGA-ohjelmistopino standardoituihin ohjelmistokirjastoihin ja sovelluskehyksiin (esimerkiksi lineaarialgebran, syväoppimisen, salauksen, kompressoinnin ja muihin yleisiin toimintoihin) on mahdollista suoraan (läpinäkyvästi) kiihdyttää suurta määrää sovelluksia ja yksinkertaistaa toteutuksia erilaisissa käyttökohteissa, koska yksittäisten sovellusten ei tarvitse olla tekemisissä yksittäisten kiihdytinasteiden kanssa perustason tiedonsiirrosta puhumattakaan.

FPGA-pohjainen kiihdytinlaitteisto

OPAE-ajuri ja API-kirjastokerrokset koostetaan yksityiskohtaisista laitteistospesifikaatioista, joista saadaan tieto tiedonsiirtoyhteyksien määristä ja tyypeistä, hallintametodeista ja rekonfiguraatioiden käsittelytavoista. Pohjana olevan FPGA-laitteistoalustan on minimissään pystyttävä tarjoamaan infrastruktuuri näiden resurssien kehittämistä, allokointia ja yhteyskäytäntöjä varten.

Kuva 3. FPGA-ajuri.

FPGA-ajuriarkkitehtuuri määrittelee yksittäiset alusta-ajurit hallintatoimintoihin, kuten rekonfiguraation ja kiihdyttimen yhteyskäytäntöihin. Edellinen liittyy FPGA-hallintalogiikkaan, kun taas jälkimmäinen hoitaa yleisten käytäntöjen mukaiset tiedonsiirtoyhteydet FPGA-lohkoon ohjelmoituun kiihdyttimeen. FPGA-ajurikerroksen tehtävänä on tasoittaa alla olevasta laitteistoarkkitehtuurista aiheutuvia vaihteluita, jolloin on mahdollista käyttää useampia eri liitäntäteknologioita ja säilyttää samalla järjestelmän integriteetti ja stabiilius. Joustavuuden lisäämiseksi FPGA-ajuri on segmentoitu pääajuriksi ja useiksi osa-ajureiksi. Pääajuri etsii ja tunnistaa FPGA-laitteita ja sen jälkeen aikaansaa vuorovaikutuksen yksittäisiin osa-ajureihin perustuen tunnistettuun laitteeseen liittyvään laiteosien toimintojen luetteloon.

FPGA:n API-liitäntä

Koodaajalle käytettävissä oleva API-liitäntä noudattaa kiihdytinresurssien oliopohjaista mallinnuskuviota siihen liittyvine toimintoineen. Toteutus on kuitenkin kirjoitettu C:llä, jotta minimoidaan piirikuvion vaatima ala ja sen vaikutus sovelluksiin.

OPAE C API on mallinnettu kokoelmasta perusobjekteja, joilla kuvataan, identifioidaan ja referoidaan FPGA-resursseja. On syytä korostaa, että tässä kuvatut API:t muodostavat peruspaketin, joka on sovitettavissa useimpiin ohjelmistojärjestelmiin liitettäviin FPGA-kiihdyttimiin. API:n avulla voidaan myös mallintaa laitteisto- tai alustaspesifisiin laajennuksiin erityisiä kohdearkkitehtuurien erityisominaisuuksia. Esimerkkinä voidaan mainita alustaspesifinen API-laajennus, joka toimii pieniviiveisenä ilmoitusmekanismina Intelin Xeon-prosessorin yhtenäisen muistiväylän ja integroitujen FPGA-piirien välillä.

Kuva 4. OPAE C API:n olio- ja ohjauskaavio.

Kuvassa 4 esitetään tyypillinen API-perustaisten toimintojen etenemiskaavio sovelluksessa, joka haluaa käyttää ja saada käyttöoikeudet tiettyyn kiihdyttimeen. Aluksi sovellus luo ominaisuuksia kuvaavan olion, joka määrittelee etsittävän olion tunnuspiirteet ja joka siirretään fpgaEnumerate()-kutsuun sisältäen joukon symboleita, joilla identifioidaan yksittäiset resurssipyynnöt. Symbolin pitäminen hallussa ei merkitse siihen liittyvän resurssin omistamista. Symbolin valitsemisen jälkeen sovellus tekee kutsun fpgaOpen() hankkiakseen omistukseensa resurssin, joka puolestaan luovuttaa pidikkeenä toimivan kahvaosoittimensa. Tällä osoittimella voidaan kutsua yksittäisiä API-toimintoja ajantasaisesti ottamaan yhteyttä FPGA-kiihdyttimeen esimerkiksi kiihdyttimen uudelleen asettamista, ohjausrekisterien lukua ja kirjoitusta tai jaetun muistin allokointia varten. Lopulta fpgaClose() sammuttaa kahvaosoittimen ja purkaa resurssin omistuksen.

Sovelluskehyksen integrointi

Vaikka API:n tarjoamat perusresurssiabstraktiot helpottavat sovellusten tekoa erilaisille käyttöjärjestelmille ja alustoille, sovelluskehittäjä joutuu miettimään, miten resurssien käyttöoikeudet hoidetaan. Yksi lähestymistapa OPEA:a käytettäessä on integroida FPGA-kiihdytinresurssit lausekielisiin sovelluskehyksiin ja kirjastoihin. Tällä tavoin sovellusten ei tarvitse tietää kiihdytinresurssien yhteydenoton määrittelyjä ja tällöin kiihdytintoiminnot pysyvät läpinäkyvinä. Lausekielisten kirjastojen avulla saavutettava läpinäkyvyys FPGA-kiihdyttimissä tarjoaa etuja esimerkiksi kuvantunnistuksen, data-analytiikan ja datakompression tapaisissa sovelluskohteissa.

FPGA-sovellusten suunnittelu vaatii erikoisosaamista ja kykyä kohdata haasteita. OPAE:n avulla FPGA-pohjaisten kiihdytinratkaisujen kehitystyötä ja toteuttamista voidaan helpottaa merkittävästi. Tällöin yhä useampi suunnittelija voi keskittyä datakeskuksissa monimutkaisten datankäsittelysovellusten nopeuttamiseen.

MORE NEWS

Kiinalaistutkijat kehittivät piilolinssin, jolla näkee pimeässä

Kiinalaiset tutkijat ovat onnistuneet kehittämään maailman ensimmäisen piilolinssin, jonka avulla ihminen voi nähdä pimeässä – ainakin tietyissä olosuhteissa. Innovaatio perustuu infrapunavaloon ja sen muuntamiseen näkyväksi valoksi silmälle.

ST:ltä kova saavutus: kaksi kiihtyvyysanturia samaan koteloon

STMicroelectronics on tehnyt merkittävän teknologisen läpimurron julkaisemalla uuden sukupolven älyanturin, joka yhdistää kaksi erillistä kiihtyvyysanturia samaan poikkeuksellisen pieneen (3 x 2,5 mm) koteloon. Tämä on ensimmäinen kerta, kun samassa moduulissa yhdistyy laajalle G-voima-alueelle skaalautuva mittauskyky, sulautettu tekoäly ja erittäin tarkka liikkeentunnistus.

Näin QR-huijaus toimii

QR-koodit ovat tulleet osaksi arkea: niitä käytetään ravintolamenuihin tutustumiseen, maksamiseen ja nopeaan kirjautumiseen eri palveluihin. Mutta juuri tämä tuttuus tekee niistä vaarallisia. Rikolliset ovat alkaneet hyödyntää QR-koodeja huijauksiin, joissa ihmiset johdatellaan huomaamatta väärennetyille sivustoille. Näillä sivuilla uhrilta kalastellaan henkilökohtaisia tietoja – kuten pankkitunnuksia – tai pyritään asentamaan haittaohjelmia hänen laitteelleen.

Halvoissa Android-televisiobokseissa vakavia tietoturvariskejä

Liikenne- ja viestintävirasto Traficom kehottaa kuluttajia olemaan tarkkana Android TV -medialaitteiden hankinnassa. Markkinoilla liikkuu erityisesti tuntemattomien valmistajien edullisia laitteita, joissa on havaittu vakavia tietoturvaongelmia – osa laitteista on jopa sisältänyt haittaohjelmia suoraan pakkauksesta.

3D-tulostus on tie kestävään elektroniikkavalmistukseen

ETN - Technical articlePerinteinen elektroniikan valmistus perustuu prosesseihin, jotka johtavat usein materiaalihävikkiin, korkeisiin työkalukustannuksiin ja merkittäviin varastointikuluihin. Viime vuosina lisäävä valmistus (additive), erityisesti 3D-tulostus, on kuitenkin alkanut nousta varteenotettavaksi vaihtoehdoksi elektroniikan valmistuksessa, sillä se tarjoaa lisää suunnittelun joustavuutta sekä mahdollisia ympäristö- ja taloudellisia etuja.

Xiaomi yllättää tehokkaalla kännykkäprosessorillaan

Xiaomi on julkistanut uuden huipputehokkaan älypuhelinprosessorinsa, XRING O1:n, joka merkitsee yhtiön suurta askelta kohti siruomavaraisuutta ja teknologista johtajuutta. Uutuus esiteltiin yhtiön "A New Beginning" -lanseeraustapahtumassa Pekingissä, jossa esillä olivat myös Xiaomi 15S Pro -älypuhelin, Pad 7 Ultra -tabletti sekä useita AIoT-laitteita.

Nyt se tapahtui: BYD ohitti Teslan

BYD on ohittanut Teslan Euroopan myydyimpänä täyssähköautojen valmistajana ensimmäistä kertaa historiassa, kertoo tuore JATO Dynamicsin raportti. Huhtikuussa 2025 Euroopassa rekisteröitiin 7231 täyssähköistä BYD-mallia, kun Tesloja myytiin 7165 kappaletta.

Yksi piiri pidentää langattoman laitteen käyttöaikaa

Elektroniikan komponenttien jakelija Rutronik on lisännyt tuotevalikoimaansa Nordic Semiconductorin uuden nPM2100-virranhallintapiirin, joka on suunniteltu erityisesti ensisijaisilla paristoilla toimivien laitteiden energiatehokkaaseen virranhallintaan.

Autoon tulee tekoäly ja suoja kvanttihyökkäyksiä vastaan

Autojen ohjelmistoistuminen ja jatkuva verkkoyhteys tekevät niistä alttiita yhä kehittyneemmille kyberuhille. NXP:n uusi OrangeBox 2.0 -kehitysalusta vastaa tähän haasteeseen yhdistämällä tekoälypohjaisen kyberturvan, kvanttikestävän salauksen ja ohjelmisto-ohjatun verkkoinfrastruktuurin yhteen järjestelmään.

Näin otat tekoälyn käyttöön teollisuudessa

Vaikka monet organisaatiot ovat jo ottaneet käyttöön perinteisiä tekoälyagentteja, tie täysin autonomisiin tekoälyagentteihin voi sisältää haasteita. Tekemällä strategisia investointeja ja omaksumalla metodisen lähestymistavan agenttien skaalaamiseen, sekä niiden erityisten roolien määrittelyyn, teollisuusyritykset voivat päästä loputtomalta tuntuvien kokeilujen yli ja alkaa nauttia tekoälyagenttien hyödyistä todellisessa elämässä, kirjoittaa teollisuuden ohjelmistoja kehittävän IFS:n tekoälyjohtaja Bob De Cuax.

Kaikista Intelin prosessoreista löytyi täysin uusi haavoittuvuus

Tietoturvatutkijat Sveitsin ETH Zürichin yliopistosta ovat löytäneet uuden, vakavan haavoittuvuuden Intelin prosessoreista. Kyseessä on täysin uusi haavoittuvuusluokka, jota kutsutaan nimellä Branch Privilege Injection. Se perustuu tapaan, jolla prosessorit ennakoivat tulevia laskentatehtäviä suorituskyvyn parantamiseksi.

Suomesta halutaan kvanttiturvallinen

Suomi ottaa merkittävän askeleen kohti kvanttiturvallista digitaalista tulevaisuutta. Uusi laaja tutkimushanke, Beyond the Limits of Post-Quantum Cryptography (BLimPQC), pyrkii varmistamaan, että suomalainen yhteiskunta ja teollisuus kykenevät puolustautumaan kvanttitietokoneiden aiheuttamia tietoturvauhkia vastaan.

Suosittu kehittäjäkortti sai neljä ydintä ja grafiikkaprosessorin

BeagleBoard.orgin tunnettu PocketBeagle-kehittäjäkortti on saanut merkittävän päivityksen uudessa PocketBeagle 2 -versiossa. Uudistuksessa laitteeseen on lisätty neliytiminen suoritin ja ensimmäistä kertaa myös grafiikkaprosessori, mikä avaa entistä laajempia mahdollisuuksia sulautettujen järjestelmien kehittämiseen.

Tehoa ja tarkkuutta teolliseen skannaukseen

Saksalainen piirivalmistaja iC-Haus tuo markkinoille uuden iC-LFMB-lineaarikuvakennon, joka vastaa teollisuuden kasvaviin vaatimuksiin tarkkuuden, suorituskyvyn ja helpon integroitavuuden osalta. Uutuustuote esitellään Laser World of Photonics 2025 -messuilla Münchenissä.

Lidarin moottori yhdelle sirulle

Analogiatekniikan edelläkävijä Silanna Semiconductor on lanseerannut uuden FirePower-sarjan laserajuripiirit, jotka yhdistävät ensi kertaa korkean jännitteen latauksen ja laserin laukaisun yhdelle sirulle. Uutuus mahdollistaa merkittävän tilansäästön ja tehohäviöiden pienentämisen esimerkiksi autojen ADAS-järjestelmien lidareissa.

Virve 2 saa suojatut ryhmävideopuhelut

Erillisverkkojen operoima viranomaisverkko Virve 2 saa merkittävän lisäpalvelun, kun Modirumin kehittämä NSC3 Group Video Service otetaan käyttöön. Kyseessä on reaaliaikainen, tietoturvallinen ryhmävideopalvelu, joka on suunniteltu erityisesti viranomaisten ja muiden turvallisuustoimijoiden tarpeisiin.

Kenttälaitteita helposti teollisuusverkkoon

STMicroelectronics on julkaissut uuden modulaarisen IO-Link-kehityspaketin, jonka tavoitteena on tehdä älykkäiden kenttälaitteiden liittäminen teollisuusverkkoon helpommaksi kuin koskaan. Uusi P-NUCLEO-IOD5A1-paketti tarjoaa kaiken tarvittavan IO-Link-yhteensopivan sensorin tai toimilaitteen (aktuaattorin) kehittämiseen – sekä laitteiston että ohjelmiston.

Silmää seuraavat lasit teollisuuteen

Tukholmalainen teknologiayritys Tobii on lanseerannut uuden Glasses X -silmänseurantatuotteen, joka on suunnattu erityisesti teollisuuden ja muiden vaativien alojen tarpeisiin. Uutuuslaseilla voidaan seurata käyttäjän katsetta reaaliajassa, mikä tarjoaa yrityksille arvokasta tietoa esimerkiksi koulutuksen, laadunvalvonnan ja turvallisuuden kehittämiseen.

Kovien olojen läppäri laitetaan kovaan testiin

Panasonicin kenttäkäyttöön suunniteltu Toughbook G2 altistetaan äärimmäiselle rasitukselle, kun seikkailujuoksija Jukka Viljanen juoksee halki Islannin suurimman jäätikön, Vatnajökullin, ilman tukitiimiä. Hänellä on ainoana henkilökohtaisena varusteenaan mukana kyseinen kannettava tietokone.

Kvanttitason salaus laitetasolla

Tietoturvassa valmistaudutaan kvanttikauteen. Microchip Technology on julkaissut uuden MEC175xB-sarjan sulautetut ohjaimet, jotka sisältävät laitetasolla toteutettua kvanttiturvallista salausta. Uutuustuote vastaa nopeasti kehittyvän kyberturvallisuusympäristön tarpeisiin, kun kvanttitietokoneiden mahdollinen uhka nykyisille salausmenetelmille kasvaa.

3D-tulostus on tie kestävään elektroniikkavalmistukseen

ETN - Technical articlePerinteinen elektroniikan valmistus perustuu prosesseihin, jotka johtavat usein materiaalihävikkiin, korkeisiin työkalukustannuksiin ja merkittäviin varastointikuluihin. Viime vuosina lisäävä valmistus (additive), erityisesti 3D-tulostus, on kuitenkin alkanut nousta varteenotettavaksi vaihtoehdoksi elektroniikan valmistuksessa, sillä se tarjoaa lisää suunnittelun joustavuutta sekä mahdollisia ympäristö- ja taloudellisia etuja.

Lue lisää...

Näin otat tekoälyn käyttöön teollisuudessa

Vaikka monet organisaatiot ovat jo ottaneet käyttöön perinteisiä tekoälyagentteja, tie täysin autonomisiin tekoälyagentteihin voi sisältää haasteita. Tekemällä strategisia investointeja ja omaksumalla metodisen lähestymistavan agenttien skaalaamiseen, sekä niiden erityisten roolien määrittelyyn, teollisuusyritykset voivat päästä loputtomalta tuntuvien kokeilujen yli ja alkaa nauttia tekoälyagenttien hyödyistä todellisessa elämässä, kirjoittaa teollisuuden ohjelmistoja kehittävän IFS:n tekoälyjohtaja Bob De Cuax.

Lue lisää...

 

Tule tapaamaan meitä tulevissa tapahtumissamme.
R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.
 
R&S -seminaari: Calibration
Tampereella 22.5.2025 (rekisteröidy)
 
R&S -seminaari: Aerospace & Defence Testing
Tampereella 5.6.2025. Tiedustelut asiakaspalvelu@rohde-schwarz.com
 

 

LATEST NEWS

NEW PRODUCTS

 
 
article