Epävarmoista taloudellisista ja geopoliittisista näkymistä huolimatta vuosi 2022 osoittautui erinomaiseksi elektroniikka-alan innovointitoiminnan osalta ja sama trendi tuntuu jatkuvan myös kuluvana vuonna IC- ja elektroniikkajärjestelmien suunnittelussa. Tässä artikkelissa nostetaan esiin joitakin alan megatrendejä, joita on syytä tarkastella lähemmin.
Kirjoittaja Joe Sawicki toimii Siemens Siemens Digital Industries Softwarella piirien suunnittelun eli IC EDA:n toimitusjohtajana. |
Megatrendi 1 – Järjestelmätoimittajien vertikaalinen integroituminen IC-suunnittelussa
Kymmenen vuotta sitten järjestelmätoimittajat käyttivät IC-piirien tilausvalmistajien kapasiteetista karkeasti arvioiden yhden prosentin verran. Tänä päivänä tuo osuus on noussut jo yli 20 prosenttiin. Yhä useampi järjestelmätoimittaja yhä useammilla teollisuusaloilla kehittää itse käyttämänsä IC-piirit. Miksi?
Järjestelmätoimittajien omaa IC-suunnittelua tukevia megatrendejä on etupäässä kaksi. Ensiksi perustasolla vaikuttavat taloudelliset seikat. Järjestelmän arvosta yhä suuremman osan määrittää puolijohteet, joten on luonnollista, että järjestelmätoimittajien intressissä on lisätä tämän osuuden arvoa omissa IC-suunnitteluissaan.
Toiseksi ja ehkä vielä edellistä tärkeämpänä syynä on mahdollisuus talon sisällä tapahtuvalla IC-suunnittelulla saada aikaan järjestelmiin innovatiivisuuden ja eriytymisen tuomaa lisäarvoa. Kaikki nykyiset kehittyneet elektroniikkajärjestelmät ovat niin sanotusti älykkäitä. Mutta miten sulauttamalla älykkyyttä ja optimoimalla laitteiden suorituskykyä saadaan käytännössä toteutettua laitteisiin älykkyyttä, joka on avaintekijä niin tuotteen erilaistumisessa kuin tuotteen kannattavuusasteen lisäämisessä. Tärkeimpiä esimerkkejä IC-suunnittelua hyödyntämällä saadusta paremmasta järjestelmän arvosta on Apple. Vuosia sitten yhtiö teki päätöksen siirtyä 64-bittiseen tietojenkäsittelyyn ennen kaikkia muita sovellustoimittajia. Syynä siirtymiseen ei ollut pelkästään 64-bittisyyden tuoma lisäys osoiteavaruuteen, vaan saada aikaan entistä tehokkaampi ja vähemmän tehoa kuluttava muistiinosoitus. Toisin sanoen tuli mahdolliseksi toteuttaa matkapuhelimia, jotka toimivat nopeammin ja pidempään kuin kilpailijoiden laitteet. Kilpailijat seurasivat perässä.
Suuri joukko yhtiöitä on siirtymässä tekoälyn ja koneoppimisen käyttöönottoon kaikilla järjestelmäsuunnittelun tasoilla lisätäkseen järjestelmien erilaistumisen astetta ja tehdäkseen järjestelmistään lopulta älykkäämpiä kuin kilpailijoiden tuotteet. Mitä enemmän tekoälystä on tulossa osa edge-pohjaisissa järjestelmissä, sitä selvemmin on nähtävissä, että tämän alueen johtavat yritykset ovat pystyneet entistä paremmin erottautumaan tuotteillaan kehittämällä itse käyttämänsä optimoidut tekoälykiihdyttimet sen sijaan, että olisivat käyttäneet kaupallisia tekoälykiihdytin-IP:itä. Tällä tavoin yritykset voivat optimoida järjestelmänsä toimimaan kokonaisuutena parhaimmalla tavalla tehonkulutuksen ja suorituskyvyn suhteen, ja samalla kilpailijoille tulee entistä vaikeampaa seurata nopeasti perässä.
Megatrendi 2 – Holistinen järjestelmäsuunnittelu (elektroniikan konvergenssi, mekaniikan ja ohjelmoinnin maailmat monipuolisina digitaalisina kaksosina)
Edellä mainittuja älykkäämpiä elektroniikkajärjestelmiä kehitetään yhä useammin reaalimaailman järjestelmäympäristöissä. Ovatpa kysymyksessä sellaiset sovellukset kuin autonominen ajaminen, 5G-verkot tai chip-to-cityn tyyppiset aloitteet, joissa tiedetään etukäteen, miten järjestelmä käyttäytyy (suhteessa odotuksiin), saadaan tuotteisiin lisää eroja hyödyntämällä reaalimaailmasta tulevia ja reaalimaailmaan lähteviä syötteitä. Kaksi suurinta IC-alan haastetta täydellisen autonomisen ajamisen toteuttamiseksi ovat tehonkulutuksen hallinta ja tarvittavan prosessointitehon määrän määrittäminen, kun järjestelmä liikkuu monimutkaisessa reaalimaailmassa.
Toisaalta nämä haasteet voimistavat tarvetta soveltaa monipuolisia digitaalisia kaksosia, joilla pystytään mallintamaan monimutkaisten sähkömekaanisten järjestelmien toimintaa monimutkaisissa reaalimaailman mukaisissa ympäristöissä. Täysin autonomisessa ympäristössä tämän monimutkaisen ohjelmistoilla ohjattavan sähkömekaanisen järjestelmän on toimittava muiden järjestelmien muodostamassa suuremmassa verkossa – osana monimutkaista ekosysteemiä. Se on perusteellisesti testattava virtuaalimaailmassa ennen kuin sitä testataan reaalimaailmassa ja otetaan kaupallisesti käyttöön. Tällä saralla on tulossa fokusta ja saavutuksia koskevia uutisia lähimmän vuoden aikana.
Megatrendi 3 – 3D IC:stä tulossa valtavirtaa ja chipletit kiinnostuksen kohteena
3D IC -suunnittelu etenee monilla tasoilla. IC-tasolla sen avulla piirivalmistajat voivat kehittää yhä pienempiä sirukokoja niin, että piirien saanto samalla paranee puolijohdekiekkoa kohti, koska satunnaisten vikojen haitallisten vaikutusten osuus piireihin pienenee. Järjestelmätasolla 3D IC mahdollistaa piirivalmistajille hyödyntää minityriasointia monipuolisesti ja vähentää materiaalikustannuksia. Mutta mikä vielä tärkeämpää, 3D IC mahdollistaa suunnittelussa sijoittaa tai koota eri tyyppisiä IC-piirejä ja SoC-piirejä, analogisia IC-piirejä ja muistipiirejä (toteutettuna niiden prosessisolmulle sopivimmalla tavalla) siten, että saadaan järjestelmätasolla parempi suorituskyky ja toiminnallisuus kuin mitä on mahdollista saavuttaa perinteisillä PCB- ja SoC-kokoonpanoilla.
Suunnittelijat ovat havahtumassa siihen, että 3D IC antaa ratkaisuja järjestelmäarkkitehtuurin asettamiin haasteisiin. Tällöin tarvitaan järjestelmätason suunnittelua useille erilaisille substraateille ja integroituja suunnitteluratkaisuja, joissa on IC-, kotelo- ja PCB-tason suunnittelua, analyysiä ja testausta – ei pelkästään kullakin tasolla (IC, välitysalusta, kotelo ja PCB) erikseen, vaan myös kaikkien tasojen yhdistelmänä holistisesti kokonaisuus huomioon ottaen.
Tarvetta on myös ratkaisulle, jossa otetaan huomioon mekaanista kestävyyttä, toimitusketjuja ja jäljitystä koskeva data ja sen keskitetty hallinta. Onkin syytä huolellisesti tutkia markkinoiden tarjontaa, jotta saa käsityksen, mitkä toimittajat tarjoavat edistyneimmän holistisen 3D IC -ratkaisun, tarvittavine siruineen, välitysalustoineen, kotelosta PCB:lle -suunnitteluineen, analyyseineen ja testeineen sekä mekaanisine, toimittajakohtaisine ja yrityskohtaisine elementteineen.
Samalla kun 3D-piireistä on tulossa valtavirtaa, alan toimijoiden keskuudessa on laaja yhteisymmärrys aikaan saada uusi teollisuusstandardi chiplet-siruille – pienille IC-piireille, jotka on helposti liitettävissä 2,5D IC -suunnittelujen välitysalustoille tai kasata toistensa päälle 3D-kokoonpanoiksi (eräänlaisiksi puolijohteista koostuviksi legopalikoiksi). Standardityöryhmiä kuten UCIe on perustettu vuonna 2022 kehittämään ekosysteemejä, joiden tavoitteena on tehdä chiplet-siruista täysin kytke ja käytä (plug and play) -yhteensopivia. EDA-toimittajille on välttämätöntä olla aktiivisesti mukana näissä kehitysponnisteluissa, jotta voidaan taata, että IC-työkalut tukevat standardinmukaisten, liitäntävalmiiden chipletien ja myös niistä koostuvien laajempien 3D IC -ratkaisujen suunnittelua. Suunnittelualalla on edessään paljon haasteita ja toivottavasti IP-alan muodostumisen alkuvaiheen vastoinkäymisistä 1990-luvun lopulla viisastuneena nyt päästään nopeasti määrittämään chiplettejä koskevat muodolliset standardit, jotka edesauttavat alan eteenpäinmenoa ja synnyttävät 3D IC -integraation puskemana uusia järjestelmäinnovaatioita.
Megatrendi 4 – Tekoäly ja koneoppiminen nyt kaikissa EDA-työkaluissa ja uusia EDA-innovaatioita tulossa
Nyt on selvää, että tekoälystä ja koneoppimisesta on tullut merkittäviä algoritmisia työkaluja, joita EDA-toimittajat hyödyntävät ratkaistessaan asiakkaiden ongelmia. Näkökulmat vaihtelevat todellisesta innovaatiotoiminnasta – kehittämällä tuotteita, joita ei aikaisemmin ole voitu toteuttaa – pienempiin kehitysaskeleisiin, joissa tekoälyn ansiosta saadaan ratkaistua aiemmin esteenä olleita ongelmia.
Esimerkkinä jälkimmäisestä voidaan mainita se, että EDA-toimittajat käyttävät tekoälyä ja koneoppimista korjaamaan työkaluissaan olevia puutteita siinä tapauksessa, kun työkalut eivät ole luonnostaan tietyn piirivalimon prosessisääntöjen mukaisia. On odotettavissa, että tämän kaltainen tekoälyn ja koneoppimisen käyttö jatkuu ja että siitä on tulossa normaali osa suunnittelutyökalujen kokonaisuutta.
On mielenkiintoista nähdä, aletaanko tekoäly ja koneoppiminen nähdä osana yhä yleistyvää ajattelutapaa, jossa tavoitteena ei ole ainoastaan tehokkaasti suoritettu nopea analyysi eikä nopeasti suoritettu suunnittelun alan tutkimus, vaan tavoitteena on työkalu, joka mahdollistaa todellisten suunnittelujen tekemisen, kuten generatiivisen mekaniikkasuunnittelun. Vielä ollaan aikaisessa vaiheessa, mutta jotain on luvassa jo tänä vuonna.