ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Ajastus menee uusiksi pienissä laitteissa

SiTimen Titan-alustan MEMS-resonaattorit mullistavat 4 miljardin dollarin resonointikomponenttien markkinan. Ne ovat jopa seitsemän kertaa kvartsia pienempiä, mutta samalla kestävämpiä, energiatehokkaampia ja helpompia integroida. Älykelloista lääkinnällisiin implantteihin, IoT-laitteisiin ja Edge AI -sovelluksiin Titan avaa laitevalmistajille uusia mahdollisuuksia suunnitella aiempaa pienempiä, älykkäämpiä ja luotettavampia tuotteita.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Ledien käyttö testauksen valonlähteenä

Tietoja
Kirjoittanut Veijo Ojanperä
Julkaistu: 02.11.2016
  • Suunnittelu & ohjelmointi

Suunniteltaessa valolähdettä optisten anturien testaukseen on huomioitava useita seikkoja. Laitteen tulisi olla helposti muunneltavissa ja perustua standardikokoisiin ledeihin. Lisäksi valovoiman pitää olla helposti säädettävissä takaisinkytkentäanturien avulla. Lämmönhallinnan vuoksi toimintavirran tulisi olla vähäinen. Mekaniikka kannattaa suunnitella niin, että optisten diffuusorilevyjen ja välikappaleiden lisääminen valolähteen ja testattavan kohteen välille on helppoa.

Artikkelin kirjoittaja Martin Buck on työskennellyt yli 20 vuotta puolijohdeteollisuudessa suoritettuaan sähkö- ja elektroniikkainsinöörin tutkinnon Plymouthin yliopistossa. Hän on työskennellyt mm. virheanalyysin, laadunvarmistuksen, tuotesuunnittelun ja testausmenetelmien kehitystyön parissa. Vuodesta 2005 hän on toiminut ams-yhtiön testausprosessien vanhempana kehitysinsinöörinä. Tärkeimpiä tuoteryhmiä ovat olleet kulutuselektroniikka, lääketieteellinen elektroniikka ja teollisuuselektroniikka.

Optisten anturien tarjonta on viime vuosina kasvanut ja monipuolistunut räjähdysmäisesti. Valoherkkiä antureita on kehitetty mitä erilaisimpiin sovelluksiin. Hyvä esimerkki on ams-yhtiön optisten anturien valikoima.

Esimerkiksi AS7000 on puettaviin laitteisiin suunniteltu täysin integroitu bioanturi terveydentilan ja fyysisen kunnon tarkkailemiseen. TMG3992, TMG3993 ja TMG4903 puolestaan ovat eleiden tunnistamiseen tarkoitettuja moduuleja, joita voi soveltaa kosketuksettomaan ohjaukseen lukuisissa eri kohteissa älypuhelimista ajoneuvoihin. TSL2572 taas on ympäristön valoisuutta aistiva anturi, joka jäljittelee mahdollisimman tarkasti ihmissilmän herkkyyttä, joten sitä voidaan soveltaa esimerkiksi näyttöruudun dynaamiseen kirkkaudensäätöön matkapuhelimissa, televisioissa ja muissa näytöllisissä laitteissa.

Tarjolla on myös väriantureita. Niitä sovelletaan laajasti esimerkiksi teollisuusprosessien ohjauksessa, lääketieteen diagnoosilaitteissa ja ledivalojen ohjausjärjestelmissä sekä lukuisissa muissa vastaavissa kohteissa. Haluttaessa näihin antureihin voidaan lisätä lähestymisentunnistus, joka on saatavissa myös erillisenä TSL2672-anturimoduulina. Lähestymisanturin avulla kohteeseen voidaan rakentaa esimerkiksi energiansäästötoiminta, jonka avulla akkukäyttöisen järjestelmän latausväliä voidaan pidentää.

Nykyisten valoanturien lisääntynyt monimutkaisuus tuo erityisiä haasteita puolijohdetestauksen kannalta. Optisen anturin suorituskyvyn mittaamiseen tarvitaan aina laadukas valolähde. Miten tällaisessa testauksessa kannattaisi sitten edetä? Jos kyseessä olisi vaikkapa muistipiirin tai AD-muuntimen testaus, käytettävät testaustekniikat ovat tarkasti dokumentoituja, mutta testaukseen tarkoitettujen valolähteiden suunnittelusta ei tietoja ole juuri saatavilla. Tämän alueen ratkaisut ovat yleensä yritysten tarkasti varjelemia salaisuuksia.

Tässä artikkelissa käsitellään valoa emittoivien diodien eli ledien datalehdissä esiintyviä keskeisiä parametreja. Ne muodostavat pohjan monille valolähteille, joita optisten anturien testaamisessa hyödynnetään. Näiden parametrien ymmärtäminen on tärkeä apu valolähteen suunnittelijalle.

On hyvä panna merkille, että saatavissa on myös kaupallinen ohjelmisto, joka on tarkoitettu valolähteiden suunnitteluvälineeksi. Ohjelmistoa voi tietysti käyttää, jos sellainen on saatavilla, mutta testaukseen soveltuvan valolähteen suunnittelu onnistuu ilman tällaista työkaluohjelmistoakin, kunhan valolähteestä tehdään riittävän helposti muokattava.

Ledin elinikä

Normaalisti ledi ei lopeta äkillisesti toimintaansa tietyn tuntimäärän täyttyessä kuten vaikkapa hehkulamppu. Tästä voi seurata se väärinkäsitys, että ledit kestäisivät ikuisesti. Todellisuudessa ledi (kuten jokainen valolähde) heikkenee iän myötä.

Näkyvän valon spektrialueella valolähteen emittoimaa valoa ilmaiseva suure on valovirta, jonka yksikkö on lumen (lm). Valovirran pysyvyydellä (lumen maintenance) puolestaan tarkoitetaan valolähteen jäljellä olevaa valovirtaa tietyllä ajanhetkellä.

Lediteollisuus on ottanut laajasti käyttöön IES:n (Illuminating Engineering Society) L70-standardin kuvaamaan ledin elinikää. Standardin mukaan ledin elinikä on se tuntimäärä, jonka jälkeen ledin tuottama valovirta on pudonnut 70 prosenttiin alkuperäisestä tasostaan. L70-taso on valittu siitä syystä, että ihmissilmä ei kykene havaitsemaan muutosta valon kirkkaudessa ennen kuin se on alentunut 30 prosenttia.

Toinen yleinen väärinkäsitys on, että ledin kirkkaus vähenisi ajan kuluessa lineaarisesti. Itse asiassa ensimmäisten muutaman sadan käyttötunnin aikana ledin tuottama valovoima voi lisääntyä tai vähentyä. Vaikka näitä vaihteluja ei voi silmin havaita, valoanturi saattaa helposti reagoida niihin. Siksi on tärkeää, että valovoima säilyy samana testauksen aikana. On huomattava, että ledin elinikää ei aina edes kerrota datalehdessä. Ja jos se kerrotaan, käytetty standardi saattaa olla jokin muu kuin L70. Siksi tämä asia tulee tarkistaa huolellisesti.

Käyttölämpötila

Ledin valovoimaan liittyy myös sen käyttölämpötila. Muuttuva lämpötila saattaa helposti kaksinkertaistaa tai puolittaa suhteellisen valovoiman. Seuraava kuvaaja esittää Kingbrightin punaisen ledin KPTR-3216SURCK tuottaman valovoiman riippuvuutta lämpötilasta:

Lämpötilan vaihtelu vaikuttaa myös ledin säteilyspektriä hallitsevaan voimakkaimpaan aallonpituuteen. Tämä voi aiheuttaa ongelmia testattavalle anturille. Esimerkiksi testattavalla fotodiodilla on aina tietty spektrivaste. Voimakkaimman aallonpituuden muuttuminen saattaa tuottaa odotettua suuremman tai pienemmän mittaustuloksen tämän spektrivasteen seurauksena.

Ympäristön käyttölämpötilan lisäksi on otettava huomioon myös ledivalon itsensä tuottama lämpö. Monelle voi olla yllättävää, että ledin säteilyhyötysuhde (optinen teho/sähköteho) on yleensä luokkaa 5–40%, joten jopa 95 prosenttia ledin tehosta voi mennä hukkaan lämpönä. Ledin ohjausvirran pitäminen mahdollisimman alhaisena auttaa, samoin käyttöjaksojen pitäminen mahdollisimman lyhyinä. Testattavan kohteen valaisuun tarvitaan kuitenkin väistämättä tietty riittävän suuri ohjausvirta. Tämän vuoksi voi olla tarpeen käyttää ledivalossa jäähdytyslevyä tai soveltaa muita lämmönhallinnan tekniikoita.

Valovoiman säilyttäminen

Testauksen aikana valovoima tulee säilyttää samantasoisena käyttämällä optista takaisinkytkentää. Yksinkertaisimmillaan tämän voi hoitaa valoa jännitteeksi muuntava anturi kuten ams:n TSL250R-tuote. Ledin virtaa voidaan näin ohjata ja varmistaa, että anturi tuottaa vakaan lähtöjännitteen.

Valovoiman säilyttäminen on siis tärkeää, mutta mitä muuta mittauskohteen valaisussa tarvitaan? Osa vastauksesta riippuu tietysti mitattavan laitteen herkkyydestä. Aluksi on parasta valita ledi, jonka valovoima on suurempi kuin kohteen tarvitsema. Kannattaa varmistaa, että valittu ledi on koteloltaan standardikokoa. Silloin ledin vaihtaminen toiseen tyyppiin käy helposti, jos vianhaussa tarvitaan esimerkiksi lisää valoa kohteeseen.

Vaadittu valaistusvoimakkuus

Kun on varmistettu, minkälaisella ledillä työskentely halutaan aloittaa, on seuraavaksi selvitettävä ledin säteilykulma datalehdestä. Datalehdet saattavat olla hieman erilaisia, mutta yleensä niissä esiintyy tämän kaltainen kuvaaja:

 

Kuvaaja esittää säteilyn suhteellista intensiteettiä ledin katselukulmasta riippuen. Nollakulma on kohtisuorassa lediin nähden. Esimerkkitapauksessa ledin säteilykulma on 120 astetta. Tämä on määritelty kulmaksi, jossa mitattu valovoima on 50 prosenttia maksimiarvosta. Käytännössä valovoiman halutaan olevan samalla tasolla niin suuressa katselukulmassa kuin mahdollista. Kuvaajasta voidaan myös määrittää suurin kulma, jossa 100 prosentin suhteellinen valovoima saavutetaan. Tässä tapauksessa kulma on noin 10 astetta.

Kun säteilykulma on selvitetty, seuraavaksi tulee tarkastella aluetta, joka täytyy valaista. Nykyään testataan yleensä enemmän kuin yhtä laitetta kerrallaan, joten valaistava alue voi olla melko laaja. Lisähankaluutta tuo se, jos kukin testattava laite sisältää useita fotodiodeja. Tämä voi olla tilanne esimerkiksi monissa kooderilaitteissa. Ellei fotodiodien saturaatiota sallita testauksen aikana, valaistusvoimakkuuden tulee olla tasainen koko fotodiodialueella.

Tarkastellaan esimerkkinä halkaisijaltaan 2 sentin ympyrää, joka valaistaan aiemmin mainitulla Kingbrightin ledillä KPTR-3216SURCK. Kyseinen ledi tuottaa 100 prosenttisen suhteellisen valovoiman kymmenen asteen katselukulmaan asti. Nyt pitäisi selvittää, kuinka etäällä valolähteen tulisi sijaita testattavasta laitteesta. Ratkaisu saadaan yksinkertaisen trigonometrian avulla:

Etäisyys (d) = säde (r) / tan (katselukulma (Ø) )

d = 1 cm / tan 10o = 5,67 cm

Näin on selvitetty, millä etäisyydellä ledin tulee olla testattavasta laitteesta. Koska laitteen valoherkkyys tunnetaan, tiedetään myös sille vaadittava valaistusvoimakkuus. Ongelmana on se, että lukseina mitattava valaistusvoimakkuus on kääntäen verrannollinen valolähteen ja kohteen välisen etäisyyden neliöön. Eli pelkistäen ilmaistuna: valolähde näkyy sitä himmeämpänä, mitä kauemmas se sijoitetaan. Onneksi valaistusvoimakkuus voidaan laskea helposti ledin datalehdessä ilmoitetun valovoiman perusteella:

lx = cd / d2

missä lx = valaistusvoimakkuus lukseina, cd = valovoima kandeloina ja d = etäisyys metreinä.

Ledin KPTR-3216SURCK datalehdestä saadaan tyypilliseksi valovoimaksi 80 millikandelaa. Aiemman perusteella tiedämme, että oikea etäisyys alueen valaisuun on 5,67 cm. Näin ollen:

Valaistusvoimakkuus = 80 mcd / 0,05672 = 24,884 lx

Verrataan tätä arvoa 1 mm etäisyyttä vastaavaan lukemaan:

Valaistusvoimakkuus = 80 mcd / 0,0012 = 80k lx

Näiden lukemien eron suuruudesta saa jonkinlaisen käsityksen, kun muistaa, että valaistusvoimakkuus ulkona suorassa auringonvalossa on noin 100k luksia ja pilvisenä päivänä noin 20k luksia. Tyypillisessä toimistossa lukema voi olla 500 luksin luokkaa ja hämärässä käytävässä ehkä 50 lx.

Ellei esimerkkitapauksen 24 884 luksin valaistus riitä, tilanteen korjaamiseen on kaksi vaihtoehtoa. Ledin virtaa voidaan lisätä, mutta se toisaalta vaikuttaa käyttölämpötilaan, mikä saattaa lyhentää ledin elinikää. Toinen vaihtoehto on vaihtaa valittu ledi toiseen tyyppiin, jolla on suurempi valovoima. Jos toinen ledityyppi valitaan, pitää kuitenkin varmistaa, että laskettu säteilykulma pätee edelleen.

Diffuusorin käyttö

Edellä kuvatuissa esimerkeissä on käytetty vain yhtä lediä. Käytännössä valolähde voi myös koostua useiden ledien muodostamasta matriisista. Tällaiseen lediryhmään voidaan päätyä monesta eri syystä, esimerkiksi silloin kun yhden ledin valokeila ei pysty tuottamaan riittävää valaistusvoimakkuutta testattavalle laitteelle. Tai kun valolähteen ja testattavan laitteen välinen laskettu etäisyys osoittautuu epäkäytännölliseksi.

Useiden ledien osittain päällekkäin asettuvat valokeilat voivat aiheuttaa ongelmia testattavan laitteen toiminnalle. Valomatriisi saattaa synnyttää joihinkin kohtiin kirkkaita ”valopilkkuja”. Yksi tapa torjua tätä ilmiötä (mikäli se on todellinen ongelma testauskohteelle) on valoa hajottavan diffuusorilevyn käyttö. Tällaisia optisia hajottimia on tarjolla lukuisia eri tyyppejä ja kaikki niistä aiheuttavat valolle jonkinasteisia siirtohäviöitä.

Kun diffuusorilevyä käytetään, on laskuissa huomioitava sekä etäisyys levystä lediin että mittauskohteeseen. Viimeksi mainittu saadaan käyttämällä laskennassa diffuusorilevyn hajotuskulmaa ledin säteilykulman sijasta.

Monilla optisten komponenttien toimittajilla on valikoimissaan diffuusoreita rakennussarjoina. Niiden hajotinlevyt ovat tyypillisesti ruuvein kiinnitettäviä, minkä ansiosta erilaisten levytyyppien ja hajotuskulmien kokeileminen on helppoa. Lisäksi niihin on helppo tehdä välikappaleet, joiden avulla voi helposti säätää diffuusorilevyn etäisyyttä sekä ledivalolähteeseen että testauskohteeseen.

Käytännön esimerkki

Eräässä todellisessa mittausprojektissa testattavana oli fotodiodeista koostuva matriisi. Diodiryhmä muodosti osan kolmiomittausanturista. Tämän tyyppistä matriisia voidaan käyttää myös reunantunnistukseen skannereissa ja tulostimissa. Myös ams:llä on lukuisa joukko tämän alueen standardituotteita kuten TSL140 ja TSL141. Tässä projektissa kyse oli kuitenkin sovelluskohtaisesti räätälöidystä tuotteesta.

Kolmiomittauksessa anturimoduuli lähettää fokusoidun valonsäteen kohteeseen, josta se heijastuu takaisin valoherkkään anturiin. Kohteen tarkan sijainnin määrittämiseksi kaikkien matriisiin sijoitettujen fotodiodien tulee olla vasteeltaan yhtäläiset. Suurin sallittu epäsovitus fotodiodien välillä saa olla korkeintaan 1% riippuen vaaditusta mittaustarkkuudesta.

Mittauksessa käytetyn valolähteen rakenne käy ilmi seuraavasta kuvasta:

Kuvasta nähdään, että valolähde koostuu pintaliitosledien muodostamasta matriisista, joka voi valaista laajan alueen testauksen aikana. Mukana on myös kolme valoanturia redundanssin aikaansaamiseksi – jos yksi antureista vioittuu, se voidaan havaita kahden muun anturin mittaustulosten perusteella.

Kehitystyön aikana ledit vaihdettiin toiseen tyyppiin. Tähän päädyttiin, koska alkuperäiset ledit kykenivät tuottamaan riittävän valaistusvoimakkuuden vain silloin, kun niitä syötettiin lähes sallitulla maksimivirralla. Tästä syntyi liikaa lämpöä. Lisäksi anturitkin vaihdettiin, sillä alkuperäiset ajautuivat kyllästystilaan, minkä vuoksi valolähteen tarkka säätäminen tuli mahdottomaksi.

Kun kaikki valolähteessä alun perin ilmenneet ongelmat oli ratkaistu, voitiin lopullisesta laitteesta kerätä seuraavaa dataa:

Kuvaajasta nähdään, että matriisin yli siirryttäessä lähtöjännite putoaa noin 3 prosenttia, mikä vastaa riittävän hyvin ennakoitua suorituskykyä. Vierekkäisten pikselien epäsovitus on enintään 0,3 prosenttia, mikä sekin jää selvästi annettujen speksirajojen sisään.

Tuotantovaiheessa on tarkoitus testata itse asiassa kahta mittauskohdetta rinnakkain. Valolähde valaisee molemmat kohteet samanaikaisesti. Tässä vaiheessa on varmistettava, että mittaustulokset kummastakin kohteesta ovat vertailukelpoisia. Mitkä tahansa valolähteen ongelmat, kuten kirkkaat tai pimeät pisteet, tuottaisivat korrelaatio-ongelmia. Seuraava kuva esittää testauskohteen fotodiodiryhmän yhden diodin mittaustulokset yhdeksästä eri laitteesta. Kukin laite testattiin 50 kertaa.

Kaaviosta nähdään selvästi erinomainen vastaavuus mittauskohteiden välillä. Korrelaatio diodiryhmän kaikkien fotodiodien kesken oli yhtä hyvää tasoa.

Yksi testaukseen tarkoitettu liitäntäkortti ei kuitenkaan riitä täyteen tuotantoon. Siksi kortteja on valmistettava useita, mikä tarkoittaa, että valolähteitäkin on useita. Korttien yhtäläisyyden varmistamiseksi valolähteet pitää kalibroida ennen kuin niitä voi ottaa mukaan tuotantoprosessiin. Kalibroinnissa hyödynnetään kohteina näytekappaleita, joiden valovaste tunnetaan, ja uuteen valolähteeseen syötettävä virta säädetään antamaan haluttu lähtöjännite. Kun vaadittava virtalukema on saatu selville, valolähteen anturien jännitelukemat tallennetaan ja niitä voidaan käyttää valolähteen ohjaamiseen tulevissa mittauksissa.

Seuraavassa kaaviossa on esitetty mittaustulokset, kun 10 kohdelaitetta testattiin kymmeneen kertaan. Mittausajoja tehtiin kaikkiaan neljä: kaksi suoritettiin alkuperäisellä tuotantokortilla ja kaksi uudella kortilla. Tulokset osoittavat erinomaisen hyvää korrelaatiota mittauskorttien kesken.

MORE NEWS

Microchipin uusi piiri toimii älykkäänä virran vahtikoirana

Microchip on esitellyt kaksi digitaalista tehonvalvontapiiriä, jotka mittaavat kannettavien ja energiarajoitteisten laitteiden virrankulutusta kuluttamatta itse käytännössä lainkaan tehoa. Uudet PAC1711- ja PAC1811-piirit toimivat itsenäisinä, MCU:sta riippumattomina ”älykkäinä virran vahtikoirina”, jotka herättävät prosessorin vasta, kun järjestelmässä tapahtuu jotakin merkittävää.

Sähkömittareista tuttu radio laajenee uusille alueille

STMicroelectronics laajentaa tunnetun ST87M01-NB-IoT-radiomoduulinsa käyttökohteita älymittareista kohti yleisiä IoT-ratkaisuja. Yhtiö on esitellyt kaksi uutta versiota moduulista sekä päivitetyn kehitysekosysteemin, joiden avulla kehittäjät voivat tuoda kapeakaistaisen NB-IoT-yhteyden nopeasti osaksi logistiikan, teollisuuden, energiaverkkojen ja kuluttajalaitteiden sovelluksia.

Tekoälyrobotteja nopeasti Linuxilla

Avocado-käyttöjärjestelmäänsä sulautettujen laitteiden valmistajille kauppaava Peridio esitteli Embedded World North America -messuilla uuden Jetson-pohjaisen tekoälyä hyödyntävän robottidemon. Demo havainnollisti, miten sen Avocado OS -käyttöjärjestelmä ja laitehallinta-alusta lyhentävät sulautettujen AI-laitteiden tuotantovaiheeseen siirtymisen jopa kuukausista päiviin.

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

Sähköinen liikenne on siirtynyt uuteen aikakauteen sekä maailmalla että Euroopassa. Gartnerin tuoreen ennusteen mukaan maailman teillä liikkuu ensi vuonna yli 116 miljoonaa sähköajoneuvoa, kun taas TechGaged Research raportoi, että polttomoottorit ovat nyt virallisesti vähemmistössä Euroopan unionissa.

Winbond vie teollisuuden DDR4-muistit uudelle tasolle

Winbond on esitellyt uuden 8 gigabitin DDR4-muistin, joka nostaa teollisuus- ja sulautettujen järjestelmien perinteisen DDR4-teknologian aivan uudelle suorituskyky- ja tehokkuustasolle. Yhtiö valmistaa uutuuden omalla 16 nanometrin prosessillaan, mikä tuo pienemmän sirukoon, alhaisemman virrankulutuksen ja paremman signaalieheyden – ominaisuuksia, joita teollisuus edellyttää pitkän elinkaaren laitteistoilta.

Ultravakaa kellosignaali auttaa tunnistamaan GPS-häirinnän

GNSS-vastaanottimien suojautuminen sekä häirintää että harhautusta vastaan paranee merkittävästi, kun vastaanotin käyttää tavallista kvartsikelloa tarkempaa ja stabiilimpaa referenssikelloa. Tähän tarpeeseen vastaa SiTimen uusi Endura Super-TCXO ENDR-TTT, joka on suunniteltu erityisesti ilmailun, puolustuksen ja teollisuuden PNT-sovelluksiin.

Tämä vuosi kuuluu iPhonelle, ensi vuonna koko markkina kutistuu

Applen vahva vuosi nostaa älypuhelinmarkkinat takaisin kasvuun, mutta edessä siintää jälleen notkahdus. IDC:n tuoreiden lukujen mukaan maailmanlaajuiset älypuhelintoimitukset kasvavat vuonna 2025 yhteensä 1,5 prosenttia 1,25 miljardiin laitteeseen. Suurin selittävä tekijä on Applen ennätysvuosi: iPhone 17 -sarjan vetämä kysyntä nostaa yhtiön toimitukset 247,4 miljoonaan laitteeseen, mikä merkitsee 6,1 prosentin vuosikasvua.

Tässä pahimmat virheet piirikortin suunnittelussa

PCB-suunnittelun virheet eivät aiheuta vain pieniä häiriöitä. Ne voivat rikkoa toiminnallisuuden, pysäyttää sertifioinnit, syödä akut tyhjiksi, heikentää luotettavuutta tai jopa tehdä tuotteesta mahdottoman valmistaa. Näin muistuttaa suunnitteluasiantuntija John Teel, joka käy uudella videollaan läpi 21 yleisintä ja vakavinta virhettä, joita hän näkee toistuvasti sadoissa tekemissään suunnittelukatselmoinneissa.

Vakava haavoittuvuus React- ja Next.js-sovelluksissa – päivitä heti

React-tiimi on julkaissut erittäin vakavan tietoturvahaavoittuvuuden, joka koskee React Server Components -arkkitehtuuria sekä sen varaan rakentuvia kehitysalustoja, erityisesti Next.js-sovelluksia. Haavoittuvuus mahdollistaa täysin autentikoimattoman etähyökkäyksen, jonka avulla hyökkääjä voi suorittaa mielivaltaista koodia palvelimella.

Autojen sisävalaistukseen mullistava ratkaisu

DP Patterning ja ams OSRAM ovat esitelleet uudenlaisen ratkaisun, joka voi muuttaa autojen sisävalaistuksen suunnittelua merkittävästi. Yhtiöiden kehittämä konsepti esiteltiin ensi kertaa marraskuussa Productronica-messuilla Münchenissä.

Lataa laitteet auringon- tai sisävalosta

Belgialainen e-peas on esitellyt AEM15820-energiankeruupiirin, joka on suunniteltu hyödyntämään hybridiaurinkokennojen koko tehoalueen. Hybridikennojen etuna on kyky tuottaa energiaa sekä sisävalaistuksessa mikrowattitasolla että suorassa auringonpaisteessa useiden wattien teholla. Uusi PMIC pystyy käsittelemään tämän koko skaalan, mikä avaa tien käytännössä itseään lataaville kuluttaja- ja IoT-laitteille.

Tria tuo tehoa verkon reunalle DragonWing-moduuleilla

Avnetin entinen sulatuettujen ryhmä eli nykyinen Tria Technologies tuo ensimmäiset Qualcomm Dragonwing IQ-6-sarjaan perustuvat moduulit markkinoille. Uudet SM2S-IQ615- ja OSM-LF-IQ615-moduulit tarjoavat teollisuusluokan suorituskykyä ja modernia AI-kiihdytystä SMARC- ja OSM-moduuleina.

Suomalaisille kvanttialgoritmeille kysyntää maailmalla

Suomalainen kvanttialgoritmiyhtiö QMill laajentaa kvanttialgoritmitutkimuksen kansainvälistä yhteistyötä merkittävällä tavalla. Yhtiö on solminut strategisen tutkimussopimuksen kanadalaisen École de technologie supérieure (ÉTS) -yliopiston kanssa edistääkseen kvanttilaskennan käytännön sovelluksia ja validoidakseen algoritmeja todellisia teollisia haasteita varten. Sopimus vahvistaa entisestään suomalaisosaamisen kysyntää globaaleissa kvanttikeskuksissa.

Kiinnostavatko humanoidirobotit? Ensi viikolla ilmainen webinaari

Mitä pitää ottaa huomioon, jos suunnittelee ihmisen tavoin käyttäytyvää humanoidirobottia? Miten signaalit reititetään? Miten syötetään sähköä? Miten liittimet valitaan, jotta laite kestää siihen kohdistuvat rasitukset?

Minikokoinen kondensaattori yli kilovoltin SiC-sovelluksiin

Murata on esitellyt maailman ensimmäisen 15 nF:n ja 1,25 kilovoltin jännitekestolla varustetun C0G-tyypin monikerroskeramiikkakondensaattorin (MLCC), joka on pakattu poikkeuksellisen pieneen 1210-kokoluokkaan (3,2 × 2,5 mm). Uutuus vastaa suoraan SiC-MOSFET-tekniikan kasvavaan tarpeeseen, jossa korkeajännitteiset ja erittäin vähän häviävät komponentit ovat välttämättömiä resonanssi- ja snubber-piireissä.

LUMI-tekoälyhubi avautui Otaniemessä

LUMI-tekoälytehtaan hubiprojektin päällikkö Eeva Harjula (CSC) korostaa, että uusi Otaniemen hubi tuo tekoälyn mahdollisuudet konkreettisesti lähemmäs opiskelijoita, startup-yrityksiä ja pk-sektoria. - Tavoitteena on luoda kohtaamispaikka, jossa syntyy uusia ideoita ja yhteistyötä suomalaisen tutkimuksen, elinkeinoelämän ja yhteiskunnan hyväksi. Otaniemen hubi toimii LUMI-tekoälytehtaan päähubina” Harjula sanoo.

Wi-Fi 8 -piirien testaaminen voi alkaa

Rohde & Schwarz ja Broadcom ovat ottaneet ratkaisevan askeleen kohti seuraavan sukupolven Wi-Fi 8 -laitteita. Broadcom on validoinut R&S:n uuden CMP180-radiotesterin Wi-Fi 8 -piirien kehitys- ja tuotantotestaukseen, mikä tarkoittaa, että ensimmäisiä 802.11bn-siruja voidaan alkaa testata ja optimoida jo ennen standardin lopullista valmistumista.

Androidissa paikattiin kaksi vakavaa haavoittuvuutta

Google on julkaissut joulukuun Android-turvapäivitykset, jotka paikkaavat yhteensä yli sata haavoittuvuutta eri järjestelmäkomponenteissa. Merkittävimpiä ovat kaksi vakavaa zero-day-haavoittuvuutta, joiden Google arvioi olleen jo kohdennetun hyväksikäytön kohteena.

Lue tämä, jos suunnittelet sähköautojen tehoelektroniikkaa

Rutronik ja Bosch ovat julkaisseet uuden teknisen dokumentin, joka avaa poikkeuksellisen yksityiskohtaisesti seuraavan sukupolven piikarbiditekniikkaa. Paperi kattaa kaiken MOSFET-arkkitehtuurista kiekkokokoluokan muutokseen ja kosmisen säteilyn aiheuttamien vikojen hallintaan.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • Microchipin uusi piiri toimii älykkäänä virran vahtikoirana
  • Sähkömittareista tuttu radio laajenee uusille alueille
  • Tekoälyrobotteja nopeasti Linuxilla
  • Onko muisti GenAI:n pullonkaula?
  • Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

NEW PRODUCTS

  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
  • Kilowatti tehoa irti USB-tikun kokoisesta muuntimesta
  • Älykäs sulake tekee sähköautoista turvallisempia
 
 

Section Tapet