Mobiilidatan räjähdysmäinen kasvu nostaa verkkojen teonkulutusta. Verkon energiatehokkutta pitää parantaa kaikissa osissa – erityisesti tukiasemien RF- ja kantataajuusosissa.
Artikkelin ovat kirjoittaneet LSI:n Axxia-verkkoprosessorien tuotemarkkinoinnista vastaava Ed Saba (oikealla) ja verkkotuotteiden strategisesta suunnittelusta vastaava Steve Vandris. Ed Saba on aiemmin työskennellyt StoredIQ:ssa, RMI:ssä (NetLogic) ja Sigmatelilla. Hänellä on sähkötekniikan tutkinto Michiganin yliopistosta. Steve Vandris on puolestaan vastannut esimerkiksi LSI:n verkkoprosessorien markkinoinnista. Ennen LSI:tä Steve on työskennellyt Agere Systemsillä ja Texas |
Mobiilidatan kääntöpuoli
Älypuhelimien ja tablettien valtava suosio sekä pilvipalvelujen lisääntyvä käyttö ajaa ihmisiä yhä enemmän langattomien nettiyhteyksien pariin. Mobiiliverkkoja kohtaan paine kasvaa koko ajan. Ciscon VNI-indeksin (Visual Networking Index) mukaan globaalisti joka kuukausi tuotetaan 1,6 eksatavua dataa, mikä kasvattaa dramaattisesti mobiiliverkkojen tehonkulutusta.
Operaattorit käyttävät noin kaksi miljardia dollaria vuodessa verkkojensa sähkölaskuihin ja yhä suuremman osan virrasta kuluttavat tukiasemat. Vodafonen mukaan tukiasemien osuus mobiiliverkon tehonkulutuksesta on 60 prosenttia, kun kytkinlaitteet kuluttavat 20 prosenttia ja runkoverkko voin 15 prosenttia kokonaissähköstä.
Tukiaseman suhteellisen suuri sähkönkulutus johtuu ennen kaikkea RF- ja kantataajuuslaskennan huonosta tehokkuudesta. IET:n mukaan tyypillinen 3G-tukiasema kuluttaa tehoa noin 500 wattia tuottaessan 40 watin lähetystehon. Lisäksi prosessoinnin aiheuttama lämpö pitää poistaa, yleensä ilmajäähdytyksellä, mikä kasvattaa tukiaseman tehonkulutusta entisestään. 3G-tukiasema kuluttaa vuodessa sähköä keskimäärin 4,5 megawattituntia. Niinpä esimerkiksi Iso-Britannian kattava 12 000 tukiaseman 3G-verkko kuluttaa sähköä yli 50 gigawattituntia vuodessa. Tämä aiheuttaa suuret CO2-päästöt ja kasvattaa operaattorin käyttökustannuksia.
Kehittyvissä maissa tukiasemia ei usein voi liittää suoraan sähköverkkoon. Scientific American -lehden mukaan maailmassa on noin viisi miljoonaa tukiasemaa, josta 640 000 ei ole kytketty sähköverkkoon. Niiden voimanlähteenä on yleisimmin diesel-generaattori. Polttoaineen ja sen kuljettamisen kustannusten logistiikkaongelmineen pitävät tukiaseman käyttökustannukset korkeina.
Kun mobiilikäyttö lisääntyy ja 4G/LTE-verkkojen käyttöönotto saa vauhtia kehittyvissä maissa, tulee mobiilidatan tarve kasvamaan räjähdysmäisesti. Myös tukiasemien sähkön- ja jäähdytyksentarve kasvaa. Vaill tukiasemin tehokuus on parantunut vuoden 2003 kolmesa prosentista 12 prosenttiin vuonna 2009, tarvitaan lisää parannuksia jotta matkapuhelinverkon sähkönkulutusta voidaan rajoittaa ja siten kontrolloida operaattorien toimintakustannuksia.
Verkko- ja tukiasema-arkkitehtuurien parantaminen
Tukiasemien tehonkulutusta yritetään vähentää monin tavoim. Verkkoarkkitehtuuri on kehittymässä kohti heterogeenistä arkkitehtuuria (HetNet), joka koostuu erikokoisista tukiasemista, kuten kuva 1 osoittaa.
Kuva 1. Heterogeeninen arkkitehtuuri, jossa verkko koostuu makrosoluista ja pienemmistä soluista, parantaa verkon energiatehokkuutta.
HetNet-verkossa pienet mikro- tai pikotukiasemista koostuvia soluja, joilla on pienempi kantama ja kapasiteetti ja siten myös pienempi tehonkulutus, käytetään täydentämään makrosoluja koko verkossa. Tämän ansiosta verkko osaa sovittautua jatkuvasti tilaajamäärään, mikä pienentää tehonkulutusta. Pienet solut tuovat paremman yhteyden lyhyillä kantamilla, mutta ne myös vähentävät dataliikennettä makrosoluissa, jolloin näiden tehonkulutus pienenee.
Tukiaseman sisällä parannukset keskusprosessoriin kantataajuuskortilla voivat parantaa datankäsittelyn tehokkuutta. Jotta näistä parannuksista saataisiin täysi hyöty, pitää skaalattavan pienien ja makrosoluissa käytettävän prosessoriarkkitehtuurin tehonsäästötekniikoita voida hyödyntää nopeasti ja kustannustehokkaasti koko verkossa.
Tehovahvistimen tehokkuus
Kuva 2 näyttää tyypillisen makrotukiaseman toiminnalliset osat.
Kuva 2. Tukiaseman toiminnalliset lohkot.
Tukiaseman RF-osa kuluttaa yli puolet kokonaistehosta, mikä selittyy pääosin tehovahvistimen tehottomuudella. Tämä johtuu siitä, että datanopeuksien ja kaistanleveyksien kasvaessa tehovahvistimen pitää toimia ei-lineaarisella alueellaan, jossa PAPR-arvo (Peak to Average Power Ratio)voi olla noin 6-10 dB. Tekniikat, joiden ansiosta tehovahvistin voi toimia lähellä 1 desibelin aluetta, jossa PAPR on alhaisempi, voivat vähentää RF-tehonkulutusta merkittävästi.
Yleisimmin käytettyjä tekniikoita ovat DPD (Digital Pre-Distortion), jolla tehovahvistimen epälineaarisuutta kompensoidaan ennalta, sekä CFR (Crest Factor Reduction), joka leikkaa signaalihuippuja pitääkseen signaalin lähetyskuvioiden eron (EVM, error vector magnitude) 3GPP-määritysten rajojen sisällä. DPD- ja CFR-algoritmit voidaan toteittaa tukiaseman radiomoduulin digitaalisessa osassa.
Perinteisen kovakoodatun DFE:n kyky tukea eri taajuuskanavia, ilmarajapintoja ja tehovahvistintyyppejä on rajallinen. Nämä ongelmat voi ratkaista LSI:n SoftDFE-teknologialla, jolla suunnittelijat voivat kehittää räätälöityjä ja energiatehokkaita DFE-moduuleja tehovahvistimelle. SoftDFE:n algoritmien avulla tehovahvistimen tehokkuus paranee jopa yli 50 prosenttia. Ohjelmoitavana SoftDFE:n algoritmit voidaan optimoida ja tarvittaessa päivittää kentällä – jopa helpommin kuin FPGA-pohjaisissa toteutuksissa. SoftDFE-lohko voidaan toteuttaa erillispiirinä, jollaista voidaan käyttää etäradiopäässä tai makrotukiaseman radiokortilla. Se voidaan myös integroida osaksi suurempaa järjestelmäpiiriä yhdessä pikotukiaseman kantataajuusosan kanssa, joka on suunniteltu LSI:n Axxia-kantataajuusprosessorin ympärille.
Parempi kantataajuuslaskenta
Tukiaseman kantataajuusyksikkö vastaa (OSI-mallin mukaisesti) Layer-1-, Layer-2- ja Layer-3 -laskennasta ja tukee LTE-, LTE-Advanced- ja WCDMA-protokollia (myös WiFiä pienempien solujen tukiasemissa). Kantataajuuslaskennan on voinut tyypillisesti toteuttaa joko ohjelmoitavana FPGA-ratkaisuna tai räätälöitynä ASIC-piirin ja ohjelmoitavan DSP-piirin yhdistelmänä. Viime aikoina kantataajuuslaskentaan on tuotu suuria moniytimisä prosessori- ja DSP-piirejä, jotka toimivat suurella kellotaajuudella. Vakiintuneet FPGA- ja ASIC-ratkaisut näyttävät laittavan suunnittelijat valitsemaan FPGA:n joustavuuden ja ASIC-piirin suorituskykyn ja tehokkuuden välillä. Kumpikaan näistä ratkaisuista ei kuitenkaan täytä kaikkia suorituskyvyn, joustavuuden ja energiatehokkuuden vaatimuksia.
LSI:n Axxia on uusi arkkitehtuuri, joka vastaa mobiilidatapalveluiden vaatimin suorituskykyvaatimuksiin ja tuo lisäksi kantataajuuslaskentaan joustavuuden ja skaalautuvuuden, mikä mahdollistaa esimerkiksi tehonkulutuksen hallinnan laskentaa optimoimalla. Lisäksi arkkitehtuuri skaalautuu sekä makrosolujen että pienempien solujen prosessointitarpeisiin. Tällä voidaan parantaa verkon yleistä tehokkuutta.
Kuva 3 – LSI Axxia 5500 -tukiasemaprosessorin arkkitehtuuri.
Ylläoleva kuva kuvaa LSI Axxia 5500 -tukiasemaprosessorin arkkitehtuuria. Alusta hyödyntää jopa kuuttatoista ARM Cortex-A15-prosessoriydintä, millä saadaan äärimmäisen energiatehokas ratkaisu datan prosessointiin. Ytimet yhdistetään LSI:n Virtual Pipeline -linkeillä, jolloin saadaan erittäin tehokkaat rautapohjaiset verkkokiihdyttimet suuren datankäsittelyyn. Näissä kiihdyttimissä on useaa protokollaa tukeva pakettidatasuoritin, joka kykenee prosessoimaan dataa jopa 50 gigabitin sekuntivauhdilla, 20 gigabittiä sekunnissa työstävä tietoturvamoottori, dataliikenteen hallinta, sisällön tarkistua ja älykkäätt pakettien kytkintoiminnot. Axxia-alustalla on ensimmäistä kertaa toteutettu ARM:n tehokas CoreLink-muistiliitäntä, joka yhdistää isäntäprosessorin ja kaikki muistielementit järjestelmäpiirillä.
LSI:n Virtual Pipeline -tekniikka ja dedikoidut kiihdytinyksiköt ovat erittäin energiatehokas ratkaisu verrattuna laitteisin, joissa käytetään vain suurta määrää mikroprosessoreja. Näitä suorittimia ajetaan yleensä korkeilla kellotaajuuksilla, joten ne kuluttavat paljon tehoa prosessoidessaan datatehtäviä, joihin niitä ei ole alun perin suunniteltu. Lisäksi Virtual Pipeline -kiihdyttimet ovat modulaarisia, joten prosessorin suorituskykyä voidaan skaalata ylöspäin ilman, että tehonkulutusta merkittävästi kasvatetaan.
Skaalaamalla Cortex-A15-ydinten määrää ja Virtual Pipeline -resursseja suunnittelijat voivat Axxialla toteuttaa mihin tahansa tukiasemakokoon sopivan järjestelmäpiirin, oli kyse sitten 3G- tai LTE-makrosolusta tai heterogeenisissä verkoissa käytetyistä pienemmistä soluista. Fyysisen kerroksen liitäntöjen ja digitaalisten toimintojen määrä sirulla voidaan myös optimoida. Lisäksi OEM-valmistajat voivat lisätä prosessorille räätälöityjä toimintoja, kuten ohjelmoitavia DSP-ytimiä ja ohjelmistoja joko räätälöidäkseen piirin tai lisätäkseen integraation astetta. Alusta tukee valmiiksi yleisimpiä siirto- ja tietoturvaprotokollia, kuten IPSec, IPV4, IPV6 ja LTE MAC, mikä osaltaan tuo lisää joustavuutta tehon ja suorituskyvyn säätämiseen poistaessaan dataprosessoinnin tehtäviä isäntäsuorittimelta.
Integroitu kantataajuusjärjestelmäpiiri
LSI:n Sift DFE -tekniikka yhdessä Axxia-prosessorialustan kanssa voi vähentää 3G- tai LTE-makrosolun tukiaseman RF- ja kantataajuuslaskennan tehonkulutusta jopa 50 prosenttia. Kun tämä yhdistetään HetNet-verkkoarkkitehtuurin mukanaan tuomiin säästöihin, voidaan pienemmän luokan Axxia-tukiasemapiirejä hyödyntämällä päästä merkittäviin säästihin tehonkulutuksessa. Tämä tuo verkko-operaattoreille lisää kontrollia hallita käyttökustannuksiaan.
Lopuksi
Kun langattomien nettiyhteyksien suosio kasvaa räjähdysmäisesti kaikkilla, tukiasemien kuluttama sähkö muodostaa yhä suuremman osan koko verkon tehonkulutuksesta. Verkko-operaattoreille on erittäin tärkeää parantaa verkkojensa ja tukiasemien energiatehokkuutta.
Siirtymistä aiempaan tehokkaampaan HetNet-arkkitehtuuriin täydentää innovatiivinen verkkoprosessorien arkkitehtuuri, jossa yhdistyy rautatason suorituskyky uudelleenohjelmoitavuuden joustavuuteen. Sen avulla voidaan saada hallinutaan tämänpäivän tukiasemien RF- ja kantataajuusosien jatkuvasti kasvava tehonkulutus.