Moottorikäyttöjen kaltaisissa suuritehoisissa järjestelmissä harmoniset yliaallot heikentävät tehonsyötön laatua. Yliaallot voidaan eliminoida helposti hyödyntämällä riittävän korkean eristystason omaavaa jänniteanturia valvontaan. LEM-yhtiö on kehittänyt anturinsarjan, joka tarjoaa helppokäyttöisen jännitteentunnistuksen sopivalla eristyksellä.
Artikkelin kirjoittaja Damien Leterrier toimii LEM-yhtiön kansainvälisenä tuotepäällikkönä. |
Tärkeiden sähkömoottorien suojaaminen poikkeavilta tilanteilta on välttämätöntä aina tuuliturbiineista junien vetolaitteisiin. Tuulivoiman kaltaisilla energialähteillä tuotetun uusiutuvan energian yleistyessä on tärkeää varmistaa, että moottoreille syötetään mahdollisimman korkealaatuista sähkötehoa.
Keskeinen näkökohta on varmistaa kaikissa lämpötiloissa ja ympäristöoloissa järjestelmän luotettavuus ja turvallisuus, kun ensiöpuolen DC-syöttö muunnetaan tasavirrasta vaihtovirraksi.
Ympäristöystävällisen energian kasvava kysyntä on yksi tuulivoiman yleistymisen vetureista. Tuuliturbiineissa käytetään yleensä muuttuvaan nopeuteen perustuvaa ohjainta, joka yhdessä tehomuuntimen kanssa syöttää generaattorin tuottaman energian verkkoon. Yleisen ongelman muodostavat kuitenkin tehoelektroniikassa syntyvät harmoniset yliaaltovirrat, jotka heikentävät merkittävästi verkkoon syötettävän virran laatua.
Kuvaan 1 on taulukoitu yhteenveto IEEE 519 -standardin vaatimuksista. Siinä esitetään harmonisia yliaaltoja koskevat rajoitukset sekä jännitteelle että virralle eri suuruisilla linjajännitteillä.
Kuva 1. Harmonisia yliaaltoja koskevat rajoitukset jännitteelle ja virralle eri suuruisilla linjajännitteillä taulukoituna.
Huom. a) Harmoninen kokonaissärö (THD) voi nousta jopa 2,0 prosenttiin suurjännitejärjestelmissä, joissa aiheuttajana on HVDC-terminaali, jonka vaikutukset ovat vaimentuneet pisteissä, joihin tulevat käyttäjät saatetaan kytkeä.
Lähde: Modifioitu standardista IEEE Std. 1159-2009, IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Power and Energy society.
Harmonisten yliaaltojen aiheuttamien vääristymien vähentämiseksi hyväksyttävälle tasolle käytetään erilaisia suotimia. Nämä suotimet kykenevät kompensoimaan epälineaaristen kuormien tuottamia yliaaltoja ja ne sijoitetaan mahdollisimman lähelle vääristymien syntykohtaa. Yksi yleisimmistä tekniikoista on käyttää aktiivista APF-tehosuodinta (Active Power Filter), joka korjaa vääristyneen aaltomuodon syöttämällä linjaan anti-harmonista aaltoa. Tyypillinen piirikaavio on esitetty kuvassa 2.
Kuva 2. Tyypillinen piirikaavio aktiivisen tehosuotimen käytöstä.
Anti-harmoninen signaali muodostetaan hyödyntämällä p-q-teoriaa APF-kytkennän referenssinä. Clarken muunnosta käyttäen muunnetaan kolmivaiheiset koordinaatit jännitteen ja virran vastaaviksi kaksivaiheisiksi α-β-koordinaateiksi.
Suuria virtoja/jännitteitä sisältävissä järjestelmissä antureille asetetaan kovat vaatimukset, sillä niiden tulee toimittaa mitattu jännite ohjaimelle turvallisesti ja eristetysti.
LEM-yhtiön kehittämä elektronisten jänniteanturien DVC 1000 -perhe tarjoaa tähän riittävän korkean eristystason, jopa 4,2 kV. Modulaarisen rakenteensa ansiosta anturi voidaan asentaa mahdollisimman lähelle kuormaa ja varmistaa, että se mahtuu käytettävissä olevaan rajalliseen tilaan.
Rautatieliikenteen sovelluksissa tehoa erilaisille kuormille kuten tuulettimille, puhaltimille, valaistukselle ja akkulatureille syöttävän lisämuuntimen on valvottava tiukasti harmonisia yliaaltoja. Erityisen tärkeää on, ettei signaaleja syötetä takaisin 50 Hz taajuudella, mikä saattaisi synnyttää häiriöitä syöttölaitteisiin ja aiheuttaa näin turvallisuusriskejä. Siksi muuntimeen liitetään usein jänniteanturi, joka valvoo signaalin laatua ja muodostaa tärkeän osan turvasilmukkaa.
Kuten aiemmin mainittiin, moottorin suojaaminen on pysyvä vaatimus. Varsinkin sähkökäytöissä on useimmiten invertteripiiri, joka tasasuuntaa vaihtojännitteen korkeaksi tasajännitteeksi. Tämä DC-linkki toimii sitten teholähteenä piireille, jotka tuottavat ohjaussignaalit moottorin tehonsyöttöä varten. DC-linkin jännitettä on ohjattava jatkuvasti.
Tietyissä käyttötilanteissa moottori voi toimia generaattorina ja syöttää suurjännitettä takaisin DC-linkkiin invertterin tehokytkimien tai diodien kautta. Tämä korkea jännite summautuu DC-linkin jännitteeseen, ja moottoria ohjaavat IGBT-transistorit (Insulated Gate Bipolar Transistor) joutuvat sietämään korkeaa (mahdollisesti vaurioittavaa) ylijännitettä. Tästä syystä jännitteen valvomiseksi tarvitaan eristetty jänniteanturi, joka havaitsee ylijännitteen, ja sen seurauksena ohjausyksikkö sulkee koko sovelluksen turvallisesti ylijännitteen ilmetessä.
Ylijännitteiden lisäksi myös alijännitteet voivat olla yhtä vaarallisia. Jos tarkastellaan 600 V jännitteelle mitoitettua sähkökäyttöä, ylijännite tarkoittaisi noin 1000 volttia ja alijännite vastaavasti noin 400 volttia. Samaa anturia pitäisi voida käyttää näiden rajojen välillä.
On lukuisia eri tilanteita, jotka voivat johtaa jännitteen putoamiseen, mutta yleisin niistä on yhden vaiheen menetys. Usein sanotaan, että jänniteanturi voidaan sijoittaa joko tasasuuntaajan AC-tulopuolelle tai vielä useammin suoraan DC-linkkiin. Anturin asentaminen molemmin puolin antaa kuitenkin enemmän tietoa ja on siksi turvallisempaa koko järjestelmälle.
Moottorikäytöt eivät ole ainoita sovelluksia, jotka vaativat galvaanisesti eristetyn jänniteanturin. Monet muutkin sovellukset, kuten aurinkopaneelien invertterit ja UPS-laitteet, edellyttävät myös näitä toimintoja sovelluksen suojaamiseksi ja turvallisuuden varmistamiseksi. Tällaisissa tapauksissa jänniteanturin on mitattava tarkasti DC-linkin jännite ja eristettävä korkeajännitteinen puoli matalajännitteisestä ohjausosasta.
Kysymys kuuluukin: milloin tarvitaan eristetty jännitteentunnistus ja milloin taas tulisi valita eristämätön anturi tai vain yksinkertainen vastusjako?
Tällaisen anturin käyttöön on kaksi pääasiallista syytä:
Ensimmäinen tapaus: Kun AD-muunninta isännöivällä mikro-ohjaimella ei ole referenssinä sama piste (DC-) kuin jännitemittauksella (vastusjako). Toisistaan poikkeavien maadoitusten määritys on tehtävä järjestelmässä varoen. Eristämällä sekä mittaussignaali että mikro-ohjain voidaan välttää järjestelmän vaurioituminen poikkeavien tapahtumien kuten salamaniskujen tai induktanssien aiheuttamien jännitepiikkien seurauksena.
Toinen tapaus: Toinen kysymys on, mitkä turvamääräykset edellyttävät todellista eristämistä sen sijaan, että luotettaisiin vain vaimennusverkkoon? Turvasertifikaattien kannalta resistiivinen vaimennus ei usein riitä järjestelmän turvallisen maadoituksen varmistamiseksi. Jännitteentunnistuksen on siksi kuljettava eristetyn kanavan läpi riittävän turvaeristyksen varmistamiseksi.
Kun koko järjestelmä suunnitellaan erilaisten laitteiden ympärille, turvavaatimusten lisääminen määrittelemättä tiettyjä erityislaitteita voi olla kustannustehokkaampaa käyttäen olemassa olevia laitteita (ohjain, PLC) valvonnan suorittamiseen. Tässä tapauksessa DVC 1000 -anturi tarjoaa ohjaussovellukseen tarvittavan helppokäyttöisen jännitteentunnistuksen sopivalla eristyksellä. Tämä suora tunnistus helpottuu entisestään käyttämällä anturin vakioliitäntää (+/- 10V tai 4-20mA), joka on yhteensopiva ohjaimen standardoitujen analogiatulojen kanssa. DVC 1000 -anturin monipuolisuus AC- ja DC-suureiden mittaamisessa mahdollistaa laajan valikoiman sovelluksia.
Kuva 3. Esimerkki olemassa olevien laitteiden (ohjain, PLC) käytöstä valvontaan. Tällöin DVC 1000 -anturi tarjoaa ohjaussovellukseen tarvittavan helppokäyttöisen jännitteentunnistuksen sopivalla eristyksellä.
Kattavampaa integrointia varten DVC 1000 -anturi on saatavissa myös piirilevylle asennettavana versiona, mikä antaa mahdollisuuden säästää tilaa. Aivan kuten paneeliin asennettava versiokin, tämä piirilevyversio DVC 1000-P on omavarainen eikä vaadi muita komponentteja.
Asennusten fyysisen koon jatkuvasti pienentyessä LEM on kehittänyt uuden tekniikan näihin jännitemittauksiin. Eristävään vahvistintekniikkaan perustuva kehitystyö on näin johtanut DVC-sarjan luomiseen.
Täydentääkseen entistä pienempään kokoon mahtuvien digitaalisten jänniteanturien valikoimaansa LEM kehitti uuden jänniteanturin, jonka avulla voidaan mitata tehollisarvoltaan jopa 1000 voltin ja huippuarvoltaan 1500 voltin jännitteitä.
Jännitteen (Vp) mittaamiseksi DVC-sarjan anturi hyödyntää vain laadukkaiksi tunnettuja elektronisia komponentteja, joista suurin on eristävä vahvistin. Mitattava jännite (Vp) siirretään suoraan anturin ensiöliitäntään sisäisen vastusverkon ja joidenkin komponenttien kautta, jolloin signaali saadaan syötetyksi eristysvahvistimelle.
Tämä mahdollistaa eristetyn signaalin palauttamisen ja mukauttamisen, jotta jännite tai virta saadaan syötetyksi anturin lähtöön, joka on siten täsmällinen esitys ensiöpuolella esiintyvästä jännitteestä.
Anturin sisäistä eristettyä DC-DC-muunninta käytetään syöttämään ensiöpuolen elektroniikkapiirejä.
Kuva 4. Mitattava jännite siirretään suoraan anturin ensiöliitäntään sisäisen vastusverkon ja joidenkin komponenttien kautta, jolloin signaali saadaan syötetyksi eristysvahvistimelle.
Eristysvahvistimen ominaisuudet
- Kaikenlaisia signaaleja - DC, AC, pulssimuotoiset, monimutkaiset - voidaan mitata.
- Galvaaninen eristys ensiön (suuritehoinen) ja toision (elektroninen piiri) välillä.
- Nopea dynaaminen vaste laajalla taajuuskaistalla.
- Vähäinen tilantarve.
Uusi DVC-perhe koostuu kahdesta päätuotteesta: piirilevyasennukseen tarkoitettu DVC 1000-P ja paneeliasennukseen tarkoitettu DVC 1000, johon on saatavissa myös sovitin DIN-kiskoa varten.
- DVC 1000-P -anturi (piirilevylle juotettava) saa käyttötehonsa +5V jännitelähteestä ja se muuntaa bipolaarisen tulojännitteen lähtöjännitteeksi, joka on keskitetty 2,5 voltin referenssiin. Tämä referenssijännite on käyttäjän ulottuvilla ja sen sijasta voidaan käyttää myös jotain muuta referenssiä.
- DVC 1000 -anturi (paneeliin asennettava) saa käyttötehonsa +/-15 - 24 V jännitelähteestä ja muuntaa bipolaarisen tulojännitteen (1000 VRMS tai +/- 1500 Vp) bipolaariseksi lähtövirraksi +/-30 mAp tai lähtöjännitteeksi +/- 10Vp (malli DVC 1000-B) tai yksinapaiseksi 4-20 mA hetkellisvirraksi 0…+1000V DC jännitteellä (ainoastaan yksinapainen DC-jännitemittaus).
Kuva 5. DVC 1000x -anturisarjan asennusvaihtoehdot. Vasemmalla piirilevyversio.
Kuva 6. Paneeliasennukseen soveltuvan DVC 1000 -anturin rakenne.
Kuva 7. DVC 1000 -malleihin on saatavissa lisävarusteena sovitin DIN-kiskokiinnitystä varten.
Tämä tekniikka säästää huomattavasti tilaa. Vertailun vuoksi tavanomainen digitaaliseen eristystekniikkaan perustuva jänniteanturi vaatii noin 304 cm3 tilavuuden, kun DVC 1000-P -anturi tarvitsee tilaa vain 37,4 cm3. Eli tilaa säästyy 87 prosenttia.
Lisäksi anturiyksikkö painaa vain 22 grammaa eli 67 prosenttia vähemmän kuin suljetun silmukan Hall-efektiin perustuva LV 25-1000 -malli. Esimerkiksi paneeliin asennettavan DVC 1000 -version ulkomitat ovat vain 29 x 51 x 89 mm, joten se vie paneelista vain 131,6 cm3 kokonaistilavuuden. Painoa paneeliversiolla on vain 57 g. Nämä ominaisuudet tekevät anturista ainutlaatuisen markkinoilla.
Kuva 8. DVC-anturisarjan tarjoama suorituskyky.
DVC-sarja täyttää useat kansainväliset turvastandardit sekä noudattaa IRIS-määrityksiä (International Railway Industry Standards). Anturissa hyödynnetään materiaaleja, jotka täyttävät kaikki asiaan kuuluvat palo- ja savumääräykset (EN45545), jotka ovat pakollisia rautatieliikenteessä.