ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2026  # megabox i st f wallpaper

IN FOCUS

IoT-piireillä päästöt kuriin

IoT-teknologia on nousemassa keskeiseksi työkaluksi kestävän kehityksen ratkaisuissa. Vaikka laitteiden valmistus ja käyttöönotto vaativat energiaa, pitkän aikavälin säästöt ylittävät kulut moninkertaisesti. Tuoreiden analyysien mukaan IoT voi säästää jopa kahdeksankertaisesti sen energiamäärän, jonka se itse kuluttaa elinkaarensa aikana.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

bonus # recom webb
TMSNet  advertisement
ETNdigi
2026  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Wi-Fi 7 on paljon enemmän kuin vain huippunopeaa dataa

Tietoja
Kirjoittanut Veijo Ojanperä
Julkaistu: 20.10.2022
  • Networks

Vaikka Wi-Fi 6E tekee vasta tuloaan markkinoille, 7. sukupolven Wi-Fi, jota kutsutaan myös nimellä IEEE 802.11be tai Wi-Fi 7, on aivan nurkan takana! Se on kaikkien aikojen nopein Wi-Fi-tekniikka, joka mahdollistaa ja nopeuttaa monia vaativia sovelluksia, kuten 8K-videon suoratoiston, ultrarealistiset AR/VR-sovellukset, pelaamisen ja pilvilaskennan.

Artikkelin kirjoittaja Scott Tan toimii Wi-Fi- ja verkkotuotteiden hallinnan päällikkönä onsemillä. Hän on aiemmin työskennelyt pitkään Qualcommilla ja perustanut SilverAnt Inc -yrityksen. Scottilla on insinöörin tutkinto USTC:stä Kiinassa (University of Science and Technology of China).

Tässä artikkelissa tarkastelemme tärkeimpiä ominaisuuksia, joita tuetaan 802.11be-standardin Release 1:ssä. Saamme samalla tietää Wi-Fi 7:n edut ja sen, kuinka Wi-Fi 7 voi mahdollistaa tulevaisuuden verkottumisen.

320 megahertsin levyinen kanava

Kun 6 GHz:n kaista on avattu Wi-Fi-sovelluksille, Wi-Fi 7 tukee jopa 320 megahertsin kanavakaistanleveyttä 6 gigahertsin kaistalla. Silti se tukee edelleen aiempia kanavanleveyksiä (20/40/80/160 MHz) sekä 5 että 6 gigahertsin kaistalla, sekä 20/40 megahertsin kanavanleveyttä 2,4 gigahertsin taajuudella. Pelkästään 320 megahertsin kanavat kaksinkertaistavat Wi-Fi 7:n maksiminopeudet nykyiseen Wi-Fi 6/6E:een verrattuna.

Kuva 1. 320 megahertsin kanava on selkeä parannus Wi-Fiin.

4096 eli 4K QAM -modulaatio

Kvadratuuriamplitudimodulaatiota (QAM) käytetään laajasti modulaatiomenetelmänä Wi-Fi:ssä. Se on tekniikka, joka sekoittaa kantoaallon amplitudi- ja vaihevaihteluita samanaikaisesti. Wi-Fi 6 tukee jopa 1024 QAM:ia. Alla olevassa vasemmassa kuvassa jokainen tähdistöpiste kuvassa edustaa 10-bittistä dataa (symbolia).

Wi-Fi 7 tukee 4096 QAM:ia. Jokainen tähdistöpiste alla oikealla olevassa kuvassa edustaa 12-bittistä dataa (symbolia). Toisin sanoen jokainen Wi-Fi 7:n QAM-moduloitu symboli voi kuljettaa 2 bittiä enemmän informaatiota kuin Wi-Fi 6. Tämä tarkoittaa 20 prosentin lisäystä nopeuksiin.

Kuva 2. 1024 QAM vs 4096 QAM.

Monilinkkioperaatio eli MLO

Monilinkkitoiminto (Multi-link Operation, MLO) on erittäin tärkeä ja hyödyllinen ominaisuus Wi-Fi 7:ssa. Sen avulla laitteet voivat lähettää ja vastaanottaa samanaikaisesti useiden eri taajuuksien ja kanavien kautta. Se on samankaltainen kuin langallisen (eli Ethernet-) verkon linkkien yhdistämis- tai johtokanavaominaisuudet, mutta kehittyneempi ja joustavampi. Sen avulla voidaan niputtaa useita linkkejä (radioita) tai yhdistää niitä eri taajuuksille ja kanaville toimimaan yhtenä virtuaalisena linkkinä laitteiden välillä.

Jokainen yksittäinen linkki (radio) voi toimia itsenäisesti ja samanaikaisesti muiden linkkien kanssa, tai koordinoida optimaalisen kokonaisnopeuden, latenssin, kantaman (peittoalueen) ja/tai virransäästön saavuttamiseksi. Wi-Fi 7 MLO on MAC-kerroksen ratkaisu useiden linkkien samanaikaiseen käyttöön ja läpinäkyvä ylemmän tason protokollille ja palveluille. MLO voi parantaa suorituskykyä, linkin kestävyyttä, verkkovierailua ja häiriöiden lieventämistä sekä pienentää latenssia.

Kuva 3. Esimerkki monilinkkitoiminnasta.

Esimerkiksi kotiverkossa, joka on muodostettu kolmikaistaisista (6 GHz, 5 GHz, 2,4 GHz) mesh-solmuista tai liitäntäpisteistä (AP:t), MLO:ta voidaan käyttää muodostamaan nopea, matalan latenssin langaton runkoverkko kotiverkkoon ja tarjota samalla paluukanava verkkosolmuihin tai tukiasemiin kytketyille laitteille. Jos jokainen mesh-solmu tukee kolmikaistaista 4x4-konfiguraatiota, yhdistetty runkoverkko tukee jopa 21,6 gigabitin nopeuksia. MLO:n avulla runkoverkosta tulee myös kestävämpi ja luotettavampi. Jos esimerkiksi tutka (DFS) katkaisee 5 GHz:n linkin, liikenne voidaan vaihtaa automaattisesti 6 GHz:n ja 2,4 GHz:n linkeille ilman palvelukeskeytystä tai palvelun laadun (QoS) heikkenemistä.

Wi-Fi 7:n MLO -pohjaiseen runkoverkkoon verrattuna nykypäivän Wi-Fi 6- ja 6E -verkkojen mesh -ratkaisut käyttävät yhtä 4x4-radioista langattoman runkoyhteyden muodostamiseen. Tämä tuo vain 4,8 gigabitin nopeuden sekunnissa. Jos kyseisessä linkissä on häiriöitä tai keskeytyksiä, koko runkoyhteys hidastuu tai katkeaa, mikä väistämättä aiheuttaa QoS:n heikkenemisen tai keskeytyksen.

Kun päätelaitteet, kuten älypuhelimet, kannettavat tietokoneet ja muut tukevat useita radioita, MLO paitsi luo suuremman putkea laitteiden ja tukiaseman välille suurempien nopeuksien, pienemmän latenssin ja paremman luotettavuuden saavuttamiseksi myös parantaa käyttökokemusta saumattomassa verkkovierailussa.

Monen resurssin yksiköt (MRU)

Wi-Fi 7 tuo mukanaan uusia resurssiyksiköiden (RU) allokointimekanismeja. Verrattuna Wi-Fi 6:een, jossa tukiasema määrittää vain yhden RU:n kullekin päätelaitteelle, Wi-Fi 7 sallii useiden resurssiyksiköiden (MRU) osoittamisen yhdelle laitteelle. MRU parantaa entisestään spektrin käytön tehokkuutta, tarjoaa enemmän joustavuutta kaistanleveyden ohjaamiseen päätelaitekohtaisesti tarpeiden mukaan sekä parantaa häiriöiden vähentämistä ja rinnakkaiseloa samalla kaistalla tai kanavalla toimivien muiden laitteiden kanssa.

Kuva 4. Kuvaus RU:sta ja MRU:sta 320 megahertsin levyisellä OFDMA-linkin fyysisen taso datayksiköistä.

Tällaiset MRU-mekanismit tukevat sekä OFDMA- (ortogonaalinen taajuusjakomonipääsy) että ei-OFDMA- (eli MU-MIMO) -tiloja. OFDMA-tilassa mekanismi tukee pieniä ja suurempia MRU:ita, mikä mahdollistaa paljon enemmän joustavuutta resurssien allokoinnissa ilman, että MAC- ja ajoitussuunnitelmia monimutkaistaan liikaa. Ei-OFDMA-tilassa se tarjoaa suurimman joustavuuden alikanavilla (preample puncturing of subchannels).

Esimerkiksi kaikki 20 MHz alikanavat paitsi ensisijainen tai 40/80 MHz kanavat voidaan puhkaista 320 MHz kaistanleveydellä. Tämän ansiosta lähetys voi maksimoida kanavan spektrin käytön häiriöiden esiintyessä ja tarjota parhaan rinnakkaiselon, jos kanavan tietyllä spektriosuudella toimii jokin muu, kanavan jo varannut laite.

Wi-Fi 7:ssä on monia muita uusia ominaisuuksia ja parannuksia. Tällaisia ovat esimerkiksi edellä esitelty alikanavien puhkaisu, tavoiteheräteaika (TWT) ja rajoitettu tavoiteheräteaika, laajennettu kantama (MCS 14 ja MCS 15) ja monet muut.

Muita ominaisuuksia, kuten monen AP-koordinointi (koordinoitu säteenmuodostus, koordinoitu OFDMA, koordinoitu spatiaalinen uudelleenkäyttö, yhteinen lähetys), 16 spatiaalista virtaa ja HARQ jne. voidaan tukea standardin julkaisussa 2, joita ei käsitellä tässä artikkelissa.

Mitä Wi-Fi 7 tuo loppukäyttäjille? Erittäin nopeat datayhteydet

Wi-Fi 7 tukee salamannopeita datayhteyksiä. Edeltäjänsä eli Wi-Fi 6:n pohjalle rakennettu Wi-Fi 7 tukee erittäin suurta suorituskykyä (EHT) jopa 46 Gbps:n raakadatanopeudella ja 16:lla spatiaalisella virralla, kuten standardispesifikaatioissa on määritelty. Tämä on paljon nopeampi kuin Cat 6/6a/7 -kaapeleilla toimiva 10 gigabitin Ethernet. Nopeudessa lähinnäksi pääsevät yhteysteknologioista ovat Thunderbolt 3/4, USB 4 ja HDMI 2.1, jotka tarjoavat 40 gigabitin tai tätä suuremman raakadatanopeuden.

Kuten edellä mainittiin, Wi-Fi 7 tukee 320 MHz kanavakaistanleveyttä, mikä on kaksi kertaa Wi-Fi 6:een verrattuna. Wi-Fi 7 parantaa myös QAM-modulointia 1024:stä (1K) 4096:een (4K), mikä tuo 20 prosenttia lisää nopeutta verrattuna Wi-Fi 6/6E:een tai Wi-Fi 5:n Wave 3 -versioon. Lisäksi Wi-Fi 7 kaksinkertaistaa streamin määrän kahdeksasta 16:een. Siinä missä 6/6E tukee jopa 9,6 Gbps:n nopeutta kahdeksalle striimille, Wi-Fi 7 tukee yhteensä jopa 46 gigabitin nopeutta 16 linkille (9,6 Gbps x2 kaistanleveys x1,2 QAM-parannus x2 striimit.

Tällaisilla erittäin suurilla nopeuksilla käyttäjät voivat saada usean gigabitin (5,8 Gbps) maksiminopeudet sekunnissa yleisesti käytetyille laitteille, kuten älypuhelimille, kannettaville tietokoneille jne, joissa on yleensä kaksi Wi-Fi-antennia (2 spatiaalista virtaa). Monet laitteet, jotka käyttävät yhtä antennia tiukkojen teho- tai muotorajoitusten vuoksi, voivat tukea jopa 2,9 Gbps:n tiedonsiirtonopeutta. Käyttäjät voivat saada yli kaksinkertaisen nopeuden maksamatta lisäantenneista tai korkeampia sähkölaskuja, koska ylimääräisiä tehovahvistimia tai etuastemoduulia ei tarvita. Tämä tarkoittaa todellista paradigman muutosta myös tulevaisuuden kannalta.

Ultralyhyt latenssi

Latenssi on toinen keskeinen parametri palvelun laadun (QoS) ja käyttökokemuksen kannalta. Se on erityisen tärkeä reaaliaikaisissa sovelluksissa. Monet multimediasovellukset, kuten korkearesoluutioinen reaaliaikainen videon suoratoisto, virtuaalitodellisuus, lisätty todellisuus, pilvipelaaminen ja reaaliaikainen ohjelmointi, vaativat alle 20 ms latenssin tai jopa vähemmän. Näin alhaisen latenssin saavuttaminen langattomassa ympäristössä ei ole helppoa. Pilvikäyttötapauksessa tulee huomioida myös WAN-puolen latenssi, noin 10 ms tai hieman enemmän kuituoptisia yhteyksiä käytettäessä.

WAN-modeemin ja päätelaitteen välinen ”viivebudjetti” on kuitenkin erittäin haastava, jos halutaan saavuttaa hyvä käyttökokemus. 10-20 ms latenssi voidaan saavuttaa Wi-Fi 6:lla. Ja pienempi latenssi voidaan saavuttaa Wi-Fi 6E:llä paljon vähemmän ruuhkaisessa ympäristössä. Wi-Fi 7 auttaa vähentämään latenssia alle 10 millisekuntiin ja lopulta alle 1 millisekunnin alueelle deterministisin rajoilla käyttämällä erilaisia ​​802.11be-standardien työkaluja. Näitä työkaluja ovat MLO, TWT ja rTWT, parannetut liipaistetut (triggered) lähetykset ja viime kädessä aikaherkän verkon (TSN) ominaisuuksien integrointi.

Vakaampi yhteys

Kuten edellä mainittiin, monilinkkioperointi MLO tarjoaa dynaamisen mekanismin sovittamaan yhteyttä useiden linkkien välillä. Kahden linkkikumppanin (esim. tukiaseman ja päätelaitteen) välisen yhteyden siirtokuormitus voidaan tasapainottaa dynaamisesti tasapainottamalla kuormia. Jos jossakin linkissä on häiriöitä tai yhteys katkeaa (esimerkiksi kantaman vuoksi), yhteys voi silti toimia muilla linkeillä ja lähetys voi vaihtaa saumattomasti katkenneesta linkistä hyviin linkkeihin, eli nopeaan linkin korjaukseen (fast failover). MRU/RU helpottaa myös yhteyden kestävyyttä. Esimerkiksi, kun häiriöitä tapahtuu tietyillä alikanavilla tai tietyssä toimintakanavan spektrin osassa, päätelaite voi välttää näiden häirittyjen alikanavien tai RU/MRU:iden käytön ja optimoida lähetyksen nykyisen ympäristötilanteen ja kanavan tilan perusteella. Lisäksi MCS 14 ja MCS 15, jotka on määritelty tehostamaan linkin signaali-kohinasuhdetta, parantavat yhteyden kestävyyttä, kun linkkivertaisten välinen etäisyys kasvaa.

Parempi häiriöiden kesto ja rinnakkaiselo

Wi-Fi 6 ja Wi-Fi 6E parantavat jo monia ominaisuuksia häiriön lieventämiseksi ja rinnakkaiseloon vakiintuneiden laitteiden kanssa Wi-Fi 5:n lisäksi. Wi-Fi 6 tarjoaa joustavampia alikanavan lävistyskuvioita ja voi hyödyntää radiolaitetta OFDMA-tilassa häiriöiden välttämiseksi jopa 2 megahertsin tarkkuudella, kun yhteys on huonompi tai ”rakeisempi”.

Wi-Fi 6E tukee automaattista taajuuden koordinointia (AFC) rinnakkaiseloa varten jo käytössä olevien laitteiden kanssa. Wi-Fi 7, jossa on MRU ja äärimmäinen joustavuus johdanto-puhkaisuominaisuuksilla, jotka tukevat kaikkia mahdollisia alikanava- ja korkearesoluutioisia lävistyskuvioita sekä OFDMA- että ei-OFDMA- (MU-MIMO) -tiloissa, tarjoaa paljon paremman häiriönkeston ja optimaalisen linkinlaadun eri tilanteissa.

Parempi roaming

MLO parantaa myös käyttökokemusta saumattomassa verkkovierailussa. Se tarjoaa 802.11be-standardeissa määritellyt verkkovierailun parannusominaisuudet. Esimerkiksi kun laite siirtyy kauemmas tukiasemasta, MLO pysyy monilinkkiyhteytenä reitittimen ja päätelaitteen välillä ja voi toimia automaattisesti 2,4 GHz:n kaistalla ilman tarvetta vaihtaa taajuutta. Ja toisin päin, jos laite siirtyy lähemmäksi tukiasemaa, MLO voi toimia automaattisesti ja dynaamisesti 5 GHz:n ja 6 GHz:n taajuuksilla myös paremman suorituskyvyn saavuttamiseksi. Vertailun vuoksi nykypäivän Wi-Fi 6 ja 6E -reitittimien on turvauduttava kaistanohjaus- tai asiakasohjausominaisuuksiin sovelluskerroksessa ohjatakseen päätelaitteen väkisin eri taajuuksille. Tämä ei aina toimi odotetulla tavalla, koska reititin ei hallitse päätelaitteita, joissa päätös kaistan vaihtamisesta tehdään. Lisäksi eri valmistajien laitteiden välinen yhteensopivuus on sekin suuri haaste saumattomalle verkkovierailulle.

 

Kuva 5. Esitys MLO:n hyödyntämisestä saumattomassa verkkovierailussa.

Vielä parempi spektritehokkuus

Spektrin hyödyntämisen näkökulmasta Wi-Fi 7 tarjoaa jopa paremman hyötysuhteen kuin Wi-Fi 6/6E. Lisätehokkuus perustuu useisiin Wi-Fi 7 -ominaisuuksiin: MRU, alikanavien lävistys, MLO, 4096 QAM, sekä tulevista 16 spatiaalisen striimin ja usean reitittimen koordinoidusta käytöstä, koordinoidusta keilanmuodostuksesta, koordinoidusta OFDMA:sta, yhteissiirrosta jne.

Parempi energiatehokkuus, suuremmat energiansäästöt

Hyödyntämällä suurempia nopeuksia, kiitos 320 MHz:n kanavanleveyden, 4096 QAM:n, ja lyhyemmän latenssin Wi-Fi 7 toimittaa dataa paljon energiatehokkaammin. Wi-Fi 6:n virransäästöominaisuuksia Wi-Fi 7 parantaa monin tavoin optimaalisen virransäästön saavuttamiseksi.

MLO:n myötä päätelaitteiden ei tarvitse kuunnella jokaista DTIM-majakkakehystä (delivery traffic indication map), eivätkä ne suorita ryhmän GTK/IGTK/BIGTK-päivityksiä (temporal key/integrity group temporal key/beacon integrity group temporal key). Päätelaite voi ylläpitää yhtä linkkiä DTIM-majakkapäivityksille, liikenneilmaisuille ja BSS-kriittisille päivityksille ja laittaa muut linkit syvän unen tilan ilman säännöllistä heräämistä DTIM-majakkapäivityksiin.

Wi-Fi 6:n lupaavimman virransäästöominaisuuden eli TWT:n lisäksi Wi-Fi 7 tukee niin kutsuttua TXOP-jako-ominaisuutta virran säästämiseksi. Sen ansiosta reititin voi allokoida osan hankitusta TXOP-ajasta päätelaitteelle datanlähetystä varten, jotta sen ei tarvitse herätä seuraavan palvelujakson aikana.

Onsemi tukee myös monia patentoituja dynaamisesti mukautuvia virransäästöominaisuuksia, jotka perustuvat tosielämän sovelluksiin, reaaliaikaiseen suorituskykyyn ja ympäristövaatimuksiin, kuten lämpötilaan.

Nousevia Wi-Fi-sovelluksia

Viime vuosina Wi-Fi-tunnistussovellukset, kuten liikkeentunnistus ja paikannus (erityisesti sisätiloissa), jotka perustuvat Wi-Fi-kanavan tilatietoihin (CSI) ja tarkkaan signaalin lentoajan mittaukseen ovat saaneet osakseen paljon kiinnostusta sekä palveluntarjoajilta että loppukäyttäjiltä.

Wi-Fi-kanava on herkkä häiriöille, erittäin dynaaminen ja taajuusvalikoiva. Saastunut kanavainformaatio voi heikentää dramaattisesti liikkeentunnistuksen tarkkuutta. Wi-Fi 7 tukee paljon rikkaampaa CSI-dataa (channel state information) jopa 3984 ääneen 320 MHz kanavan kaistanleveyden ansiosta. Rikkaampi CSI-data parantaa liikkeentunnistuksen tarkkuutta. Koska CSI-dataa voidaan kerätä niin paljon 320 MHz:n lähetyksessä, on käytössä riittävästi häiritsemätöntä CSI-dataa, jota voidaan valita ja käyttää liikkeentunnistukseen, samalla kun kohinaista CSI-dataa voidaan välttää.

2x- tai 4x-ylinäytteistys- ja ylösnäytteistystekniikoilla RTT-aikaleiman ja mittauksen tarkkuus voi olla alle nanosekunnin luokkaa 320 MHz signaalien kohdalla. Toisin sanoen Wi-Fi 7 tukee alle metrin (eli 30 cm) tarkkuutta etäisyys- ja sisäpaikannuksessa. Tämä mahdollistaa monia jännittäviä uusia Wi-Fi-tunnistussovelluksia.

Lopuksi

Wi-Fi 7 parantaa merkittävästi käyttäjien kokemusta monella tapaa ja tulee taloudellisesti tehokkaammaksi. Se voi mahdollistaa ja parantaa monia vaativia sovelluksia, kuten pilvipelaaminen, mukaansatempaava AR/VR, 8K-videon suoratoisto, teollisuus 4.0 ja monia muita. Käyttäjä voi odottaa Wi-Fi 7:ltä paljon suurempaa nopeutta, pienempää latenssia ja kestävämpää yhteyttä kuin mihin nykyinen Wi -Fi 6/6E voi yltää.

MORE NEWS

Renesas tuo pienten jännitteiden galliumnitridin palvelimiin

Renesas Electronics laajentaa GaN-strategiaansa palvelinmarkkinaan. Yhtiö on solminut lisenssi- ja second source -sopimuksen Efficient Power Conversionin kanssa ja saa käyttöönsä matalajännitteisen eGaN-teknologian. Kohteena ovat erityisesti AI-palvelimien sisäiset DC–DC-muunnokset.

Etteplan: joka kymmenes koodaaja saattaa lähteä tekoälyn takia

Insinööri- ja teknologiayhtiö Etteplan käynnistää muutosneuvottelut Ohjelmisto- ja sulautetut ratkaisut -palvelualueellaan Suomessa. Neuvottelujen piirissä on 336 työntekijää, ja suunnitellut toimenpiteet voivat johtaa enintään 40 työsuhteen päättymiseen. Se tarkoittaa noin joka kymmenettä työntekijää.

NanoIC-pilottilinja vihittiin – EU tähtää alle 2 nanometriin

Belgialainen mikroelektroniikan tutkimuskeskus Imec on vihkinyt käyttöön NanoIC-pilottilinjan osana 2 000 neliömetrin puhdastilalaajennusta Leuvenin kampuksellaan. Hanke on keskeinen osa EU:n puolijohdestrategiaa ja tähtää alle kahden nanometrin järjestelmäpiiriteknologiaan.

Python menettää osuutta – erikoiskielet nousussa

Python on yhä maailman suosituin ohjelmointikieli, mutta sen johtoasema kapenee. Helmikuun TIOBE-indeksissä Pythonin osuus on 21,81 prosenttia. Laskua vuodessa on 2,08 prosenttiyksikköä. Vielä heinäkuussa 2025 osuus oli lähes 27 prosenttia.

Cadence tuo tekoälyagentit sirujen suunnitteluun

Cadence Design Systems on julkistanut uuden agenttipohjaisen tekoälyratkaisun, jonka tavoitteena on automatisoida sirujen etupään suunnittelu ja verifiointi. Uusi työkalu, ChipStack AI Super Agent, tuo EDA-työnkulkuun autonomisesti toimivia tekoälyagentteja, jotka generoivat RTL-koodia, laativat testipenkit ja testaussuunnitelmat, ajavat regressiotestejä sekä analysoivat ja korjaavat havaittuja virheitä.

Erittäin tarkka anturi virranmittaukseen

Allegro MicroSystems on julkistanut uuden Hall-ilmiöön perustuvan virta-anturin, joka nostaa eristettyjen magneettisten virtasensoreiden tarkkuuden uudelle tasolle. Yhtiön mukaan ACS37017 saavuttaa tyypillisesti 0,55 prosentin herkkyysvirheen koko elinkaaren ja lämpötila-alueen yli.

Nokia haluaa tekoälyagentit operaattorien avuksi

Nokia ja Telefónica testaavat tekoälyagenttien käyttöä televerkkojen rajapintojen hyödyntämisen helpottamiseksi. Tavoitteena on nopeuttaa niin sanottujen Network API -rajapintojen käyttöönottoa ja tehdä niistä kehittäjille helpommin lähestyttäviä.

GaN avaa tien 800 voltin AI-palvelimiin

AI-palvelinten tehontarve kasvaa nopeammin kuin datakeskusten perinteinen sähkönjakelu kestää. GPU-klusterit ja tekoälykiihdyttimet nostavat yksittäisten räkkien tehon kymmeniin kilowatteihin. Tämän vuoksi ala on siirtymässä kohti 800 voltin HVDC-arkkitehtuureja. Galliumnitridi nousee tässä murroksessa avainteknologiaksi.

CHERI voi olla tärkein tietoturvahanke vuosikymmeniin

Valtaosa vakavista kyberhaavoittuvuuksista ei johdu salauksesta tai tunnistautumisesta, vaan muistivirheistä. Näitä ovat esimerkiksi puskuriylivuodot ja virheelliset muistiviittaukset. Nyt niihin haetaan ratkaisua suoraan prosessoritasolta.

ST toi integroidun tekoälyn auton ohjainpiirille

STMicroelectronics on esitellyt Stellar P3E -mikro-ohjaimen, joka tuo tekoälykiihdytyksen suoraan autoluokan ohjainpiiriin. Kyseessä on merkittävä askel kohti hajautettua, reaaliaikaista älykkyyttä ajoneuvoissa, kun AI-laskenta ei ole enää vain keskitettyjen SoC-piirien tai domain-ohjainten varassa.

Claude on omatoimisesti löytänyt yli 500 haavoittuvuutta avoimesta lähdekoodista

Generatiivinen tekoäly ei enää vain avusta ohjelmistokehitystä. Se tekee jo itsenäistä tietoturvatyötä. Anthropic kertoo, että sen kehittämä Claude Opus 4.6 on löytänyt syksystä 2025 lähtien yli 500 vakavaa haavoittuvuutta avoimen lähdekoodin ohjelmistoista. Olennaista on, että Claude on tehnyt työn pitkälti omatoimisesti.

Voisiko HDMI:n yli ladata haittaohjelman?

Voisiko älytelevisio toimia bottiverkon orjana? Periaatteessa kyllä: se on liitetty nettiin ja se on vjo varsin tehokas tietokone. Mutta siihen pitäisi saada ujutettua jokin haittaohjelma. Onko se mahdollista?

Lediajuri LIN-väylään ilman koodia

Melexis on julkistanut MLX80124-piirin, joka ohjaa auton RGB-ambient-valaistusta LIN-väylän kautta ilman omaa ohjelmistokehitystä. Piirin idea on yksinkertainen. Valaistuksen käyttäytyminen määritellään graafisella työkalulla, eikä ajuriin tarvitse kirjoittaa tai kääntää laiteohjelmistoa.

Markkina piristyy, toimitusajat pitenevät

Euroopan komponenttimarkkina on selvästi piristymässä. Samalla toimitusajat alkavat venyä valikoiduissa tuoteryhmissä. - Kyselyjen määrä kasvaa ja myynti on lähtenyt liikkeelle sekä Britanniassa että EU:ssa. Samalla osa valmistajista pidentää toimitusaikoja, sanoo Anglia Componentsin teknologiajohtaja David Pearson.

Pelkkä operaattorin kuitu ei riitä enää vuonna 2030

Valokuitu kiinteistön kellarissa ei takaa nopeaa nettiä asunnoissa. Näin on jo nyt. Vuoteen 2030 mentäessä ongelma korostuu entisestään. Kuituoperaattori Valoon taloyhtiömyynnistä vastaava myyntipäällikkö Mikael Kumpulainen muistuttaa, että sisäverkon pullonkaulat on ratkaistava, jotta nopea netti ei jää jumiin jakamoon.

Sähkö, ohjelmistot ja data dominoivat Suomen patentointitilastoissa

Suomen patentointi nojaa yhä vahvemmin sähkötekniikkaan, ohjelmistoihin ja datankäsittelyyn. Tämä näkyy selvästi Patentti- ja rekisterihallitus (PRH) tuoreissa tilastoissa, jotka kertovat sekä teknologisesta painopisteestä että alueellisista muutoksista patenttihakemuksissa.

4 gigabitin linkki laserilla

Terahertsialueella toimivalla laserilla on onnistuttu toteuttamaan 4 gigabitin sekuntinopeuteen yltävä langaton tiedonsiirtoyhteys. Tuloksen taustalla on kvanttikaskadilaser, QCL, jota moduloitiin suoraan ilman erillistä modulaattoria. Kyse on merkittävästä teknisestä näytöstä taajuusalueella, jota on pitkään pidetty lupaavana mutta käytännössä vaikeana.

Salasana ei suojaa enää kvanttiaikana

Salasanojen aika on ohi. Kvanttitietokoneet pakottavat koko tunnistautumisen ja kryptografian uudelleenarviointiin. Kyse ei ole yksittäisestä algoritmista vaan koko digitaalisen luottamuksen rakenteesta, kirjoittaa Yubicon teknologiajohtaja Christopher Harrell.

DigiKeyn uusien tuotteiden listaajilla oli kiireinen vuosi

DigiKey kasvatti tuotevalikoimaansa voimakkaasti vuonna 2025. Jakelijan varastoon lisättiin yli 108 000 uutta varastoitavaa komponenttia, jotka ovat saatavilla saman päivän toimituksella. Kaikkiaan DigiKey lisäsi järjestelmiinsä yli 1,6 miljoonaa uutta tuotetta vuoden aikana. Samalla jakelijan toimittajaverkosto kasvoi 364 uudella valmistajalla. Mukana ovat yhtiön perusliiketoiminta, Marketplace sekä Fulfilled by DigiKey -ohjelma.

Protoat Arduinolla? DigiKeyn webinaari voi auttaa

DigiKey ja Arduino järjestävät 12. helmikuuta webinaarin, jossa pureudutaan nopeaan prototypointiin Arduinon uusilla työkaluilla. From board to build: Using UNO Q and App Lab -tilaisuus järjestetään Suomen aikaa klo 17.

bonus # recom webb mobox
2026  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Älyä virtaamien mittaukseen

Virtaamamittaus on monissa laitteissa kriittinen mutta usein ongelmallinen toiminto. Perinteiset mekaaniset anturit kuluvat ja jäävät sokeiksi pienille virtausnopeuksille. Ultraäänitekniikkaan perustuvat valmiit moduulit tarjoavat nyt tarkan, huoltovapaan ja helposti integroitavan vaihtoehdon niin kuluttaja- kuin teollisuussovelluksiin.

Lue lisää...

OPINION

Salasana ei suojaa enää kvanttiaikana

Salasanojen aika on ohi. Kvanttitietokoneet pakottavat koko tunnistautumisen ja kryptografian uudelleenarviointiin. Kyse ei ole yksittäisestä algoritmista vaan koko digitaalisen luottamuksen rakenteesta, kirjoittaa Yubicon teknologiajohtaja Christopher Harrell.

Lue lisää...

LATEST NEWS

  • Renesas tuo pienten jännitteiden galliumnitridin palvelimiin
  • Etteplan: joka kymmenes koodaaja saattaa lähteä tekoälyn takia
  • NanoIC-pilottilinja vihittiin – EU tähtää alle 2 nanometriin
  • Python menettää osuutta – erikoiskielet nousussa
  • Cadence tuo tekoälyagentit sirujen suunnitteluun

NEW PRODUCTS

  • Erittäin tarkka anturi virranmittaukseen
  • Eikö 8 bittiä enää riitä? Tässä vastaus
  • Maailman pienin 120 watin teholähde DIN-kiskoon
  • Terävä vaste pienessä kotelossa
  • Click-kortilla voidaan ohjata 15 ampeerin teollisuusmoottoreita
 
 

Section Tapet