Valittaessa DC-DC-muunninta siltaan kytkettyjen tehokytkimien hilaohjaukseen kannattaa luottaa laatuun. Toiminnan luotettavuuden ja turvallisuuden takaavat muuntimen optimoidut ohjausjännitteet ja eristystasot, tasolukittu lähtöjännite, vähäinen minimikuormavaatimus sekä aina samanlaisina toistuvat jännitteiden nousu- ja laskuajat.
Tehosovelluksissa taajuusmuuttajaa tai tehomuunninta käytetään yleensä siltakytkettynä tuottamaan verkkotaajuista vaihtojännitettä tai kaksisuuntainen PWM-ohjaus moottorille, muuntajalle tai muulle kuormalle. Siltakytkentä koostuu yleensä IGBT- tai MOSFET-transistoreista ja niiden valikoimissa on myös SiC- (piikarbidi) jai GaN- (galliumnitridi) -tyyppisiä kytkintransistoreja. Niitä käytetään yleensä yläpuolisina kytkiminä, jolloin emitteri/lähde-elektrodit ovat suurtaajuisina kytkentäsolmuina suuren jännitteen puolella. Tämän vuoksi hilaohjauksen PWM-signaalin pitää olla galvaanisesti erotettu maatasosta, samoin tehonsyöttölinjojen, jotka käyttävät emitteri/lähdesolmua referenssitasona.
Ohjauspiirien ja tehonsyöttölinjojen tulee myös sietää kytkentäsolmun jännitteen suuria nousunopeuksia (dV/dt) ja lisäksi niiden kytkentäkapasitanssien on oltava mahdollisimman vähäiset. Monissa tapauksissa siltapiirit vaativat kohteen toimintajännitteeseen nähden turvalliseksi mitoitetun eristystason järjestelmän ohjauspiireistä. Ohjauspiirin eristealueiden pitää siksi olla riittävän laajat ja kestävät sekä säilyä heikentymättä järjestelmän koko elinkaaren ajan osittaisista vuotoilmiöistä huolimatta.
Esimerkiksi Muratan MGJ-sarjan DC-DC-muuntimet on suunniteltu tarjoamaan optimoidut ohjausjännitteet ja eristystasot näihin yläpuolen kytkimillä toteutettuihin hilaohjausjärjestelmiin.
Hilaohjauspiirille syötettävän positiivisen jännitteen tulee olla riittävän suuri varmistamaan tehokytkimen täydellinen saturaatio ylittämättä kuitenkaan hilan suurinta sallittua jännitettä. MGJ-sarjan muuntimissa vaihtoehdot ovat +15 V tai +20 V, mikä takaa yhteensopivuuden useisiin tehokomponentteihin. Esimerkiksi IGBT- ja GaN-MOSFET-transistorit kytkevät täydellisesti 15 voltin ohjauksella, mutta SiC-tyyppiset mosfetit saattavat vaatia lähes 20 voltin ohjausjännitteen täyteen toimintaan. Negatiivisen syöttöjännitteen tapauksessa off-tilan hilajännite 0 V soveltuu kaikille tehokomponenteille. Negatiivisen syöttöjännitteen arvoilla -5 ja -10 V saavutetaan kuitenkin nopea kytkintoiminta, jota ohjataan hilavastuksen kautta.
IGBT-transistoreilla johtavan tilan hilakynnys on muutaman voltin luokkaa, tyypillisesti 5 V, mutta piikarbidi- ja galliumnitridi-pohjaisilla tuotteilla se voi olla niinkin alhainen kuin reilun voltin luokkaa. On myös huomattava, että mikä tahansa induktanssi L kytkimen ja ohjausreferenssin välillä (piste x kuvassa 1) aiheuttaa vastakkaisen hila-emitteri-jännitteen, kun kytkin menee off-tilaan.
Vaikka induktanssiarvo saattaa olla pieni, jo 5 nH lukema voi tuottaa 5 voltin jännitteen, jos virran nousunopeus (di/dt) on 1000 A/µs, mikä ei ole tavatonta. Viiden nanohenryn induktanssiin taas ei tarvita kuin muutama millimetri kytkentäjohtoa. Sopiva negatiivinen ohjaus varmistaa, että hila-emitterin off-jännite on aina todellakin nolla tai sen alle. MGJ-sarja tarjoaa eri versioissaan negatiiviset ohjausjännitteet -5 V, -8,7 V, -10 V ja -15 V. Negatiivinen hilaohjaus helpottaa myös hillitsemään kollektorin ja hilan välistä ns. Miller-kapasitanssia. Tämän kapasitanssin vuoksi virtaa vuotaa hilaohjauspiirin, vaikka kytkin on off-asennossa.
Kun IGBT-kytkin on ohjattu off-tilaan, kollektorin ja hilan välinen jännite nousee. Tällöin virta, suuruudeltaan Cm · dVce/dt, kulkee Miller-kapasitanssin läpi hila-emitteri-kapasitanssiin Cge ja hilavastuksen läpi ohjauspiiriin, kuten kuvasta 2 nähdään. Tämän tuloksena hilan jännite Vge voi olla riittävän suuri kytkemään IGBT:n täysin johtavaan tilaan tuhoisin seurauksin. Tämä voidaan estää ohjaamalla hila negatiiviseen jännitteeseen. Myös kaikentyyppiset MOSFET-kytkimet kärsivät samasta ilmiöstä.
Kuva 2.
Hilan tehovaatimukset
Kunkin kytkentäjakson aikana IGBT/MOSFET-kytkimen hila pitää varata ja purkaa hilavastuksen Rg kautta (kuva 2). Jos kytkimenä käytettävän IGBT:n datalehdessä on esitetty hilan varauskäyrä, DC-DC-muuntimen syöttämä teho P voidaan laskea kaavasta:
P = Qg · F · Vs
Tässä Qg on datalehdestä saatava varauslukema valitulla hilajännitteen kokonaisarvolla Vs (positiivisesta negatiiviseen) ja F on kytkentätaajuus. On huomattava, että tämä tehohäviö tapahtuu kytkimen sisäisessä hilavastuksessa sekä missä tahansa ulkoisessa sarjavastuksessa. Ellei datalehdessä ole esitetty varauskäyrää vaan ainoastaan Qg-arvo joillain tietyillä hilajännitteen arvoilla, varauksen suuruus muilla jännitelukemilla voidaan likimäärin laskea kertomalla varauslukema halutun jännitelukeman ja datalehden antaman lukeman suhteella. Esimerkiksi Infineonin IGBT-kytkimen FZ400R12KE4 hilavaraus Qg on ±15 V hilajännitteellä (30 V) 3,7 µC. Jännitteellä +15/-10 V (25 V) varauslukema on likimain:
Qg = 3,7 e-6 · 25/30 ≈ 3,1 µC
10 kilohertsin taajuudella tarvittava ohjausteho on:
Pg = 3,1 e-6 · 10 e3 · 25 ≈ 0,78 W
Kun satunnaiset häviöt ja rasitusvara otetaan huomioon, sopiva muunnin tähän kohteeseen esimerkiksi Muratan MGJ2-sarjasta on 2 watin DC-DC-muunnin.
Virran huippuarvon ja keskiarvon laskeminen
Kunkin kytkentäjakson aikana hilakapasitanssiin kulkevan virran keskiarvon tulee olla nolla, joten keskimääräisen varaus- ja purkausvirran tulee olla yhtä suuri. Sen arvo on +/- Pg/Vs = +/- 31 mA edellä mainitussa esimerkissä.
Virran huippuarvo Ipk, joka tarvitaan hilakapasitanssin varaamiseksi ja purkamiseksi, riippuu jännitteestä Vs, kytkimen sisäisen hilavastuksen arvosta Rint sekä ulkoisen hilavastuksen arvosta Rg:
Ipk = Vs/(Rint + Rg)
Esimerkkimme IGBT:n (FZ400R12KE4) sisäinen hilavastus Rint = 1,9 Ω, joten tyypillisellä ulkoisen resistanssin arvolla 2 Ω ja kokonaisjännitteen arvolla 25 V saadaan virran huippuarvoksi yli 6 ampeeria. Tämä huippuvirta täytyy syöttää ohjaimen syöttölinjojen DC-suotokondensaattoreista, koska DC-DC-muuntimella ei ole riittävän suuria lähtökapasitansseja näin suurten virtojen syöttämiseksi jännitetason notkahtamatta. Itse hilaohjaimen täyty tietysti olla mitoitettu näille huippuvirtalukemille, samoin hilavastusten. Esimerkissämme hilaohjauksena syötetty ja purettu kokonaisenergia jaksoa kohti on:
E = Qg · V s = 75 µJ
Suotokondensaattorit C1 ja C2 (kuva 2) +15 ja -10 voltin jännitelinjoissa syöttävät tämän energian suhteessa niiden jännitetasoon, joten +15 voltin linjasta syötetään 45 µJ energia. Jos lähdetään siitä, että +15 V syöttöjännitteen suotokondensaattorin jännitetaso saisi notkahtaa vain hieman, ehkä noin puoli volttia kytkentäjakson aikana, voidaan laskea likiarvo kondensaattorin minimikapasitanssille C merkitsemällä yhtä suuriksi ohjaukseen syötetty energia sekä kondensaattorin alku- ja loppujännitteitä vastaavien energiamäärien erotus:
45 µJ = ½ C (Vinit2 – Vfinal2)
C = (45 e-6 · 2)/(15,2 – 14,52) ≈ 6,1 µF
Vaikka -10 voltin jännitelinjasta syötetään vain noin kolmannes ohjausenergiasta, sen suotokondensaattorilta vaaditaan yhtä suuri kapasitanssiarvo puolen voltin jännitepudotukselle, koska tämä on prosentuaalisesti suurempi osuus jännitteen alkuarvosta. Käytännössä jännitepudotuksen suuruuteen vaikuttavat enemmän kondensaattorin ESR- ja ESL-lukemat eli ekvivalenttinen sarjaresistanssi ja -induktanssi. Esimerkiksi 0,1 ohmin ESR-arvo pudottaa jännitettä yli 0,5 V, jos huippuvirta on 6 A. Siksi tähän sovellukseen on valittava suorituskykyiset kondensaattorit, yleensä suurikoteloiset ”kannut”, jotka takaavat pienen sarjaresistanssin ja moninkertaisesti minimitason ylittävän kapasitanssin. DC-DC-muuntimen datalehdessä ilmoitettua maksimikapasitanssia ei kuitenkaan saa ylittää.
DC-DC-regulointi
Hilaohjauksen absoluuttiset jännitearvot eivät ole kovin kriittisiä, kunhan ne ylittävät minimitason ja ovat selvästi läpilyöntitason alapuolella eikä tehohäviö nouse yli sallitun. Ohjaustehoa syöttävät DC-DC-muuntimet voivat siksi olla tyypiltään reguloimattomia, kuten MGJ-sarjan muuntimet, mikäli niille syötetty tulojännite on suhteellisen vakaa. Muuntimien muista yleisistä sovelluksista poiketen kuormitus on tässä kuitenkin melko vakio, kun IGBT/MOSFET-kytkin on johtavassa tilassa jokaisen kytkentäjakson aikana. Vastaavasti kuormitus on lähellä nollaa kun kytkin on off-tilassa.
Yksinkertaiset DC-DC-muuntimet yleensä vaativat tietyn minimikuorman tai muuten niiden lähtöjännite alkaa dramaattisesti nousta, jopa yli läpilyöntitason. Tämä ylijännite varastoituu suotokondensaattoreihin, joten kytkimen siirtyessä johtavaan tilaan sen hilalle syötettäisiin tällöin ylijännitettä, kunnes jännitetasot taas asettuvat normaalikuormalla. Hilaohjaussovelluksen muuntimeksi tulisi siksi valita tuote, jonka lähtöjännite on tasolukittu tai jonka minimikuormavaatimus on hyvin vähäinen.
IGBT/MOSFET-kytkintä ei saisi koskaan aktiivisesti ohjata PWM-signaalilla, elleivät syöttölinjojen jännitteet ole oikeissa lukemissa. Koska DC-DC-muunninta kytketään päälle ja pois, saattaa syntyä transienttitilanne, jossa kytkin voi ohjautua johtavaan tilaan, vaikka PWM-signaali on passiivivaiheessa. Tämä saattaa aiheuttaa virtasyöksyn tuhoisin seurauksin. Siksi on tärkeää, että muunnin käyttäytyy moitteettomasti päälle ja pois kytkettäessä eli jännitteiden nousu- ja laskuajat toistuvat aina samanlaisina.
Artikkelin on kirjoittanut Murata Power Solutionsin Paul Lee.