Sykemittari ranteessa on paljon miellyttävämpi kuin epämukava sykevyö rinnan päällä. Optiseen mittaukseen perustuvan laitteen suunnittelussa on kuitenkin monia teknisiä haasteita.
Artikkelin kirjoittaja Kevin Kilbane toimii Silicon Labsilla optisten antureiden vanhempana tuotepäällikkönä. Hän tuli Silicon Labsille vuonna 2010. Kevinillä on elektroniikkainsinöörin tutkinto Cornellin yliopistosta. |
Fitness-rannekkeet ja älykellot ovat muuttumassa perustasoisista kiihtyvyysanturin sisältävistä älykkäistä liikemittareista biometrisen aistimisen kuten sykkeen mittaamisen sisältäviksi laitteiksi. Tätä kehitystä ajavat valmistajat, jotka haluavat erottautua nopeasti kasvavilla puettavien laitteiden markkinoilla. Kehitystä nopeuttavat myös kuluttajat, jotka haluavat maksimoida suorituskykynsä ja kuntonsa aiempaa tehokkaammalla harjoituksella.
Jatkuva reaaliaikainen sykkeen mittaus auttaa motivoimaan kuluttajia sovittamaan liikuntansa sykkeen antamaan palautteen mukaisesti. Näiden laitteiden valmistajat kohtaavat useita haasteita toteuttaessaan jatkuvaa sykemittausta tuotteissaan:
- sykemittauksen tarkkuus
- mittaustarkkuus liikuttaessa
- suorituskyvyn kertominen erilaisille yksilöille
- puettavan laitteen koon ja paksuuden pienentäminen
- toiminta-ajan pidentäminen paristoilla
Puettavien järjestelmien suunnittelijat voivat valita optisten ja elektronisten järjestelmien välillä. Sähköiset tekniikat käyttävät tyypillisesti rintavyötä, jossa on kaksi elektrodia iholla mittaamassa sykettä. Tämä metodi on yleensä tarka, mutta edellyttää hankalan vyönauhan pitämistä rinnan päällä yhdessä pariston ja tietoliikennelaitteen kanssa, joka voi olla epämukavaa ja haitata liikuntaa. Optiset ratkaisut ovat parempia, koska niiden kanssa ei tarvita rintavyötä. Optinen lähetin ja anturi voidaan istuttaa suoraan rannekkeeseen.
Optisen sykemittauksen periaate
Ledistä lähtevä infrapunavalo loistaa käyttäjän ranteen ihoon, kuten kuva 1 esittää. Ihoon tuleva valo imeytyy, hajoaa ja heijastuu kudoksesta, kuista, suonista ja valtimoista. Optista anturia käytetään havaitsemaan nämä heikot heijastukset. Kudoksista ja luista heijastuva valo ei ole aikasidonnaista, joten se tuottaa vain tasavirtaista heijastusta. Kun sydän lyö, valtimoissa liikkuvasta verestä heijastuva valo muuttuu, joten tuloksena on vaihtovirtasignaali. Edistynyt signaalinkäsittely poistaa DC-signaalin ja laskee sydämensykkeen heikosta AC-signaalista. Tämä prosessointi tuottaa PPG-signaalin eli fotoplethysmografiasignaalin.
Kuva 1. Infrapunavalon havaitseminen sykkeen mittausjärjestelmässä.
Monet tekijät vaikuttavat PPG-signaalin tarkkuuteen optisessa laitteessa. Näihin kuuluvat optisen lähettimen valon aallonpituus, järjestelmän herkkyys näissä aallonpituuksissa, lähettimen ja anturin välinen etäisyys, ledin tuottaman valon määrä, lähettimien määrä ja niiden tuottama kohina järjestelmässä. Yhden käyttäjän kannalta optimaalinen sykkeen mittaus ei välttämättä toimi yhtä hyvin toisella, koska ihon pignemnteissä on eroja, samoin ranteiden fysiologiassa. Suunnittelijoiden pitää siksi valita tarkasti adaptiivisia tekniikoita mahdollisuuksien mukaan, jotta laite toimisi mahdollisimman monella käyttäjällä. Tässä epäonnistuminen tuottaa tyytymättömiä asiakkaita ja suuren palautusprosentin puettavalle laitteelle. Katsotaanpa siksi tarkemmin sykemittausjärjestelmän suunnittelun kriittisiä kohtia.
Lähettimen aallonpituus
Tyypillinen sormenpäähän tai korvaan asetettava sykemittari käyttää infrapunalähetintä 850-940 nanometrin aallonpituudella. IR-lähettimet eivät ole optimaalisia rannelaitteisiin, koska ranteessa ei ole paljon veta kuljettavia hiussuonia lähellä ihoa kuten sormenpäässä tai korvassa. Vihreät (525 nanometriä) aallonpituudet on havaittu tehokkaiksi mittaamiseen vaaleaihoisilla ihmisillä. Valitettavasti tumma iho voi imeä vihreitä aallonpituuksia. Keltaisen valon alue (590 nanometriä) toimii parhaiten tummaihoisten kohdalla. Parhaan lopputuloksen aikaansaamiseksi voidaan käyttää yhtäaikaa vihreitä ja keltaisia ledejä, mikä tietysti hieman lisää kustannuksia ja tehonkulutusta. Paras sykkeen laskemisen signaali laksetaan kunkin yksilön kohdalla adaptiivisella tekniikalla.
”Opto-kytkentä” ihoon
On tärkeää saada hyvä kytkentä optisiin signaaleihin ranteen ja puettavan laitteen välille, sillä ilmarako heikentää tarkkuutta. Joustava ranneke tuottaa läheisen mutta miellyttävän kytköksen. Mikäli ranneke on liian tiukka, kytkentä kyllä paranee mutta verenvirtaus saattaa estyä, mikä johtaa suurempaan epätarkkuuteen. Jos ranneke on liian löysä, se pyrkii liikkumaan vapaasti. Yleinen ongelma yksiledisissä rannekkeissa on se, että ranneke pitää asettaa ylemmäksi käsivarteen tai sitä pitää hieman kiertää ranteessa, jotta mittauksen suorituskyky olisi paras mahdollinen. Käyttämällä kahta optisen anturin vastakkaisille puolille asennettua lediä minimoi rannekkeen sijainnin ja sen kääntymisen tuomat ongelmat mittaamiseen. Kääntymistä (tilting) voi tapahtua harjoituksen aikana, mikäli rannekkeen voisessa reunassa on hyvä liitäntä ja toisessa reunassa ihon ja rannekkeen väliin jää ilmaa. Puettaviin laitteisiin suositellaankin kolmea lediä, joilla varmistetaan paras tarkkuus laajassa käyttäjäjoukossa. Esimerkiksi suorituskykyinen Scosche Rhythm Plus -fitnessranneke käyttää kahta vihreää lediä ja yhtä keltaista lediä kolmioon asetettuna, kuten kuvassa 2 on esitetty.
Kuva 2. Usean ledin esimerkki fitnessrannekkeessa.
Lähettimen valotehoa määrittää ensisijaisesti se virran määrä, jolla ledia ajetaan, aikapulssin pituus, säteen kulma ja valovoima. Optinen anturijärjestelmä, joka mahdollistaa useiden parametrien kontrolloinnin antaa ohjelmistolle mahdollisuuden konfiguroida toiminnan optimaalisesti erilaisille käyttäjille.
Esimerkiksi vihreissä ledeissä on korkea eteenpäin (forward) jännite, joka voi vaatia kompromissia ledin jännitteen ja antotehon suhteen. Aina ei ole mahdollistaa ajaa lediä suuremmalla jännitteellä, joten pidempää pulssiaikaa voidaan käyttää lisäämään lähettimen valoenergiaa niin, että suunnittelu pysyy ledin normaalien toimintaparametrien rajoissa. Automaattinen anturitoiminto voi säätää ledin virtaa ja/tai pulssiaikaa niin, että takaisinheijastuva signaali voidaan optimoida yksittäiselle käyttäjälle. Tämä automaattinen tasavirta-aistiminen helpottaa pienentämään järjestelmän AD-muuntimen dynamiikan vaatimuksia ja sijoittaa signaalin optimialueelle, niin että heikkokin sykesignaali voidaan havaita.
Tarkasti myös liikkeessä
Useimpien liikuntarannekkeiden suurin heikkous on se, etteivät ne pysty tarkasti seuraamaan sykettä liikuttaessa. On hyvin haastavaa riittävästi kompensoida liikettä ja fysiologisia esteitä liikuttaessa. Kiihtyvyyspiirejä käytetään usein puettavissa laitteissa ja ne voivatkin olla tehokkaita yhdistettynä edistyneeseen signaaliprosessointiin.
Nämä algorimit voivat hyödyntää kiihtyvyysanturin dataa ja hylätä sellaisia sykkeen näytteitä, jotka kohina on pilannut. Niillä voidaan myös aktiivisesti poistaa kohina signaaleista. Algoritmeista huolimatta sykesignaali voidaan menettää hetkellisesti. Adaptiivinen algoritmi, joka tunnistaa epäkelvon anturidatan mahdollistaa sykkeen jatkuvan tarkan mittaamisen myös liikuntaa harrastettaessa. On tärkeää testata algoritmitmien toiminta suurella näytejoukolla, jotka edustavat erilaisia ihonvärejä ja -sävyjä, eri-ikäisiä ja eripainoisia käyttäjiä.
Lopputuotteen kutistaminen ja ohentaminen
Sykeanturin lisääminen vie enemmän tilaa puettavassa elektroniikkalaitteessa. Monet olemassaolevat sykemittariratkaisut perustuvat suuriin erillisfotodiodeihin yhdistettynä analogiaetupäähän (front end) ja mikro-ohjaimeen. Etupää koostuu ldiajureista, AD:muuntimesta, analogiasuotimista ja ohjauksesta. Pienempi, mutta herkkyydeltään parempi fotodiodi AD-muuntimeen integroituna voi yhdessä analogiasuotimen ja lediajureiden kanssa tuottaa paljon alhaisemman peruskohinan, käyttää vähemmän AD-bittejä muunnoksessa ja olla kooltaan pienempi.
Esimerkiksi Silicon Labsin optiseen Si114x-anturiin on integroitu herkät fotodiodit, 17-bittinen AD-muunnin, matalakohinainen analogiasuodin, jopa kolme dynaamisesti konfiguroitavaa lediajuria sekä I2C-liitäntä kompaktissa 2 x 2 millin QFN-kotelossa. Tyypillinen 3 x 3 millin etupää ja erillinen fotodiodi 2 x 2 millin kotelossa vie yhteensä kolminkertaisesti tilaa.
Akkutoiminta-ajan pidentäminen
Sykemittarissa eniten tehoa kuluttaa tyypillisesti ledin näytteistysteho ja liikkeen häiriöiden aiheuttamien vaikutusten poistaminen signaalinkäsittelyllä. Avaintekijä tehonkulutuksessa on käytetty näytenopeus. Tarkka sykemittaus voi vaati nopeaa näytteistystä, kun liikutaan ja syke on korkealla. Käyttämällä dynaamista algoritmia, joka muuttaa näytenopeutta sykenopeuden mukaan voi säilyttää mittaustarkkuuden ja samalla vähentää mittarin tehonkulutusta. Näytteiden lisääminen (interpolointi) voi myös tarkoittaa pienempää tehonkulutusta kuin näytenopeuden nostaminen. Anturit, jotka dynaamisesti muuttavat ledin ajovirtaa voivat automaattisesti aistia DC-tasoa vähentääkseen tehoa ja parantaakseen suorituskykyä. Käyttämällä dynaamisesti yhtä, kahta tai kolmea lediä järjestelmässä voidaan myös pitää yllä korkeaa suorituskykyä samalla kun tehonkulutusta vähennetään.
Lopuksi
Optisen sykemittarin suunnittelu puettavaan laitteeseen pitää sisällään monia teknisiä haasteita. Suorituskykyinen integroitu optinen anturiratkaisu kuten Silicon Labsin Si114x-sarja antaa kehittäjille mahdollisuuden suunnitella kestäviä puettavia laitteita, jotka maksimoivat toiminta-akan akkuteholla ja minimoivat ranteeseen asetettavan sykemittarin fyysisen koon. Silicon Labs on ottanut useita merkittäviä edistysaskelia tuodakseen optisen sykemittauksen osaksi nopeasti kasvavaa puettavien elektroniikkalaitteiden markkinoita.