ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2026  # megabox i st f wallpaper

IN FOCUS

IoT-piireillä päästöt kuriin

IoT-teknologia on nousemassa keskeiseksi työkaluksi kestävän kehityksen ratkaisuissa. Vaikka laitteiden valmistus ja käyttöönotto vaativat energiaa, pitkän aikavälin säästöt ylittävät kulut moninkertaisesti. Tuoreiden analyysien mukaan IoT voi säästää jopa kahdeksankertaisesti sen energiamäärän, jonka se itse kuluttaa elinkaarensa aikana.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

bonus # recom webb
TMSNet  advertisement
ETNdigi
2026  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Datanopeuden mysteeri: simulointi paljastaa monimutkaisuuden

Tietoja
Kirjoittanut Eduardo Gonzalez Reyes, Anritsu
Julkaistu: 19.02.2014
  • Mittaus & testaus

Datanopeuden pitäisi olla yksinkertainen parametri. Jos mobiilikäyttäjä haluaa ladata musiikkia kännykkäänsä 192 kilobitin sekuntivauhtia, miniminopeuden linkille tukiasemasta kännykkään pitäisi olla 192 kilobittiä sekunnissa. Mitä monimutkaista tässä voisi olla? 

Kirjoittaja Eduardo Gonzalez Reyes on Anritsun sovellusinsinööri Ruotsissa. Hänellä on fysiikan tutkinto Zaragozan yliopistosta. Aiemmin hän on työskennellyt Ericssonilla tietoliikenneinsinöörinä. Nykyään hän työskentelee Anritsulla Kistassa, lähellä Tukholmaa.

Itse asiassa musiikinkuuntelijan verkkopalvelun laatuun vaikuttaa kolme tärkeää parametria. Tämän päivän LTE-verkoissa on kolme keskeistä tekniikkaa yhteysongelmien ratkaisemiseen.

Tässä artikkelissa kuvaillaan maksimidatanopeuden eli läpäisyn (throughput) mittauksia, joita voidaan tehdä päätelaitteessa (kännykässä tai mokkulassa) sekä niitä vaikutuksia, joita datanopeuden muuttumisella voi olla päätelaitteen suorituskykyyn. Artikkeli osoittaa myös, kuinka mahdollisuus mallintaa kännykän käyttäytymistä kaikissa mahdollisissa olosuhteissa - mikä voidaan tehdä sofistikoidussa tukiasemasimulaattorissa - on tehokkaan verkkosuunnittelun kannalta erittäin tärkeää.

Maksimidatanopeus markkinoinnin aseena

Verkon läpäisykykyä eli maksimidatanopeutta käytetään usein verkon ja päätelaitteen suorituskyvyn tärkeimpänä indikaattorina. Radioprotokollan kompleksisuus aiheuttaa kuitenkin sen, että operaattorien ja kännykkävalmistajien rohkeista kaistalupauksista on lähes mahdotonta päätellä mitään. Siksi on tärkeää tietää, mitä mitataan ja missä olosuhteissa, kun datanopeuden mittaustuloksia arvioidaan.

Itse asiassa kolme parametria kuvaa datansiirron pääpiirteitä: Keskimääräinen datanopeus, datanopeuden vaihtelu ajan mukaan ja pakettiviive (jitter).

Vaihtelut näiden parametrien arvoissa vaikuttavat eri sovelluksiin eri tavoin. Siksi on tärkeää ymmärtää parametrit hyvin.

Keskimääräinen datanopeus on se, mitä datanopeudella yleensä tarkoitetaan (ks.kuva 1). Datanopeuden vaihtelu tarkoittaa nopeimman ja hitaimman datayhteyden eroa tietyn ajanjakson aikana.

Kuva 1: Keskimääräisen datanopeuden ja datanopeuden vaihtelun vertailu.

Kuva 2 antaa toisenlaisen kuvan näyttäessään datanopeuden vaihtelun määrän tietyssä mittausajassa. Selvästi datanopeuden vaihtelu on vuossa 1 selvästi suurempaa kuin vuossa 2 (flow 1 ja flow 2).

Kuva 2: Datanopeuden vaihtelun vertailu kahdessa eri vuossa.

Nämä kaksi eri bittivuota muodostavat erilaisia haasteita verkko-operaattorille esimerkiksi puskuroinnin ja datanopeuden maksimivaatimusten suhteen. Esimerkiksi datanopeuden vaihtelu vaikuttaa VoIP-videopuheluihin - kun bittivirta hidastuu, ääni ja kuva uhkaavat katketa, häiriintyä tai kadota kokonaan. Sen sijaan suuria dokumentteja lataava bisneskäyttäjä voi sietää suuriakin vaihteluita yhteyden laadussa, kunhan keskimääräinen datanopeus riittää siihen, että lataus valmistuu siedettävässä ajassa.

Kolmas parametri pakettiviive (jitter) tarkoittaa aikaa, joka datapaketilta kuluu matkata lähtöpisteestä määränpäähänsä. Tätä parametria on vielä vaikeampi hallita kuin verkonläpäisyä, koska siihen vaikuttavat vahvasti myös käyttöjärjestelmät sekä palvelimessa että päätelaitteessa.

Verkko-operaattorien kannalta ongelmallista on se, että monet näihin kolmeen parametriin vaikuttavista tekijöistä eivät ole heidän hallittavissaan. Datanopeus päätelaitteessa on seurausta datansiirrosta ilmateitse, ja toisin kuin kiinteässä yhteydessä, operaattori ei voi vaikuttaa suoraan linkin olosuhteisiin. Ilmatie ja ympäristö vaikuttavat datanopeuteen: tällaisia ovat esimerkiksi kosteus ja muiden RF-signaalien aiheuttamat häiriöt. Lisäksi käyttäjä - ei operaattori - määrää, mitä bittivirtoja verkon yli siirretään ja milloin.

Operaattorin tehtävä on siksi hyvin vaikea. Pitää tarjota riittävä palvelunlaatu erilaisille datatyypeille, jotka toimivat eri tavoin erilaisissa datanopeuksissa, datanopeuden vaihtelussa ja pakettiviiveissä.

LTE:n työkalut datanopeuteen

LTE-verkkoprotokolla tarjoaa kolme keskeistä tapaa varmistaa, että datanopeus vastaa käyttäjien vaatimuksia. Näiden syvällisempää ymmärtämistä tässä artikkelissa tuetaan datalla ja graafisilla mittaustuloksilla, jotka perustuvat todellisiin mittauksiin. Mittauksia varten datanopeus oli lähteessä (palvelimessa, josta data lähetettiin) aina 70 megabittiä sekunnissa, ja päätelaitteena käytettiin ZTE:n MF820E-mokkulaa. Grafiikat ja taulukot näyttävät, miten hyvin dataa vastaanotettiin erilaisissa radio-olosuhteissa.

RF-lähetystehon hallinta on ensimmäinen operaattorin käytössä oleva tekniikka. Vastaanotetun tehon vaihtelun vaikutukset on helppo ymmärtää, jos päätelaitetta vertaa ihmiskorvaan. Mitä hiljaisemmalla äänellä meille puhutaan, sen vaikeampaa puhetta on ymmärtää. Samalla tavalla mobiilipäätelaitteen vastaanotto on vaikeampaa matalatehoisella signaalilla.

Kuva 3: Datanopeuden hidastuminen vastaanotetun signaalin tehon pienentyessä.

Kuva 3 näyttää, että vastaanotetulla tasolla -68 dBm (tai sitä suuremmalla vastaanotetulla tehotasolla) datanopeus on sama kuin alkuperäisessä lähetyksessä (70 Mbit/s). Kun teho pienenee, paketteja alkaa kadota ja päätelaitteen datayhteys hidastuu. Käytännössä tämä koetaan älypuhelimen käytössä selaimen jumiutumisena, tai sivun hitaana latautumisena.

Vastaanotettu teho vaikuttaa datanopeuden vaihteluun ja keskimääräiseen datanopeuteen. LTE-verkon ominaisuuksiin kuuluu, että datanopeuden hidastuessa dataa menetetään ryppäinä sen sijaan, että yhteys hidastuisi tasaisesti ja pikku hiljaa. Tyypillisesti yhteydessä menetetään joukko peräkkäisiä paketteja ennen kuin normaali yhteys palautuu ja datayhteys kasvaa hyväksyttävälle tasolle.

Kuva 4: Muutokset datanopeudessa suhteessa vastaanotettuun radiotehoon.

Kuva 4 osoittaa, miten arvokasta operaattorille on testata datanopeuden vaihteluita (mainituilla parametreilla) eri päätelaitteilla. Tällainen testaaminen onnistuu helpoimmin siihen suunnitellulla LTE-tukiasemasimulaattorilla, kuten Anritsun MD8475A-testerillä. Tämä osoittaa, että juuri ja juuri havaittavissa oleva yhteyden tason vaihtelu -68 dBm lähetysteholla muuttuu selvästi havaittavaksi -70 dBm:ssä. Kun tämä on tiedossa, verkon suunnittelijat voivat määritellä mastojen sijainnin ja tukiasemien konfiguroinnin niin, että käyttäjät pääsevät nauttimaan yli -70 dBm:n yhteyksistä mahdollisimman paljon.

Pakettien uudelleenlähetys

Kun ilmarajapinnan laatu tukiaseman ja päätelaitteen välillä heikkenee, paketteja saattaa kadota, mikä vaikuttaa yhteyden laatuun. Tätä varten LTE-protokolla sallii pakettien uudelleenlähetyksen tietyn määrän kertoja. Mikäli tällöinkään paketit eivät mene perille, tukiasemaverkko luovuttaa ja datapaketti menetetään kokonaan.

Kuva 5: Pakettien uudelleenlähetyksen vaikutus datanopeuteen eri radiotehoilla.

Kuva 5 osoittaa, että mitä useampia uudelleenlähetyksiä on, sitä parempi datayhteys on. Näin tapahtuu, vaikka radioteho pienenisi ja linkin laatu heikkenisi. Kuva 6 näyttää mielenkiintoisen tuloksen: datayhteyden vaihtelu vähenee myös, kun sallitaan enemmän pakettien uudelleenlähetyksiä.

Kuva 6: Datayhteyden vaihtelun vertailu yhden uudelleenlähetyksen (vasemmalla) ja neljän uudelleenlähetyksen (oikealla) jälkeen.

Pakettien uudelleenlähetystä ei ole rajattu vain LTE-verkkoihin. Sitä käytetään yleisesti dataverkoissa, esimerkiksi TCP-protokollaa käytettäessä lähes kaikessa internetliikenteessä.

Uudelleenlähetyksen suurin haitta on se, että pakettiviive (jitter) kasvaa: uudelleenlähetetyn paketin pääseminen määränpäähänsä kestää pidemmän aikaa. Tämä voi häiritä joitakin sovelluksia - esimerkiksi webbiselailussa sivut eivät ehkä lataudu tasaisesti.

LTE-protokolla yrittää ratkaista tämän ongelman monimutkaisella ohjelmistorakenteella, joka varmistaa että datapaketit (uudelleen) lähetetään kerran millisekunnissa. Tämä minimoi vaikutuksen pakettiviiveeseen.

Selvästi tämä on alue, jolla operaattorit hyötyvät tukiasemasimulaattorilla testaamisesta. Sen avulla he voivat kokeilla erilaisia uudelleenlähetyksen strategioita löytääkseen optimaalisen tasapainon keskimääräisen datanopeuden, datanopeuden vaihtelun ja pakettiviiveen välillä.

Adaptiivinen linkki

Erittäin huonoissa radio-olosuhteissa edes useat uudelleenlähetykset eivät johda hyväksyttävään datanopeuteen. Operaattorin viimeinen keino on tällöin adaptiivinen linkki: radiolähetyksen ominaisuuksia sovitetaan dynaamisesti (reaaliajassa) koettuihin muutoksiin ilmarajapinnassa.

Tämä tapahtuu valitsemalla maksimidatanopeus, jota voidaan menestyksekkäästi pitää yllä pakettihäviöitä aiheuttavien verkkohäiriöiden ilmaantuessa. Tämä mahdollistaa erilaisten radiotekniikoiden hyödyntämisen, jotta lähetyksestä tulee kestävämpi (robust).

Tukiasema voidaan konfiguroida tekemään linkin adaptointipäätöksiä pakettihäviöiden jatkuvan monitoroinnin ja ilmarajapinnan olosuhteiden perusteella. Nämä päätökset määrittelevät kuinka paljon tai vähän käytössä olevista radioresursseista annetaan yhdelle matkapuhelimelle. Nämäkin konfiguroinnit voidaan optimoida tukiasemasimulaattorilla tehtyjen simulointien perusteella.

Vaikka datanopeuksien tahallinen rajoittaminen voi teoriassa kuulostaa epätoivottavalta, käytännössä täyden datayhteyden antaminen paketteja hukkaavalle päätelaitteelle johtaisi arvokkaiden radioresurssien tuhlaamiseen, kun niitä voitaisiin antaa toisen päätelaitteen käyttöön. Lisäksi verkko menettäisi datalähetysten laadun kontrollin. Sen takia on parempi johdonmukaisesti ja jatkuvasti tarjota alhaisempaa datayhteyttä kuin antaa käyttöön nopeampi yhteys, joka johtaa pakettien katoamiseen ja yhteyden katkeamiseen.

Johtopäätös

Verkonläpäisy tai datanopeus on yllättävän monimutkainen mittaus. Mittaustulos ilman mittausolosuhteiden tuntemista kertoo käyttäjälle hyvin vähän testattavan päätelaitteen suorituskyvystä.

Simulointien hyöty operaattoreille tulee siitä, että he voivat kokeilla erilaisia ilma- ja verkko-olosuhteita, ja tutkia niiden vaikutuksia matkapuhelimen datanopeuteen. Tämän ansiosta operaattorit voivat hyödyntää erilaisia strategioita kuten RF-tehon konfigurointia, pakettien uudelleenlähetystä ja linkin adaptointia tuodakseen käyttäjille parhaan mahdollisen palvelun laadun tukemissaan verkon käyttötavoissa.

MD8475A-testerin kaltainen hyväksi havaittu tukiasemasimulaattori, joka tukee kaikkia mobiiliprotokollia LTE:een saakka, sisältää sisäänrakennettuna erilaisia optioita vaihtelevien toimintaolosuhteiden simuloimiseen ja testaamiseen.

MORE NEWS

Insta on pitkään tehnyt oikeita valintoja

Insta Group on kasvanut lähes 200 miljoonan euron teknologiakonserniksi 15 peräkkäisen kasvuvuoden aikana. Nyt yhtiö vie seuraavan askeleen ja vahvistaa johtamismalliaan. Konsernille nimitetään oma toimitusjohtaja, ja molemmat suuret liiketoiminta-alueet saavat omat vetäjänsä. Kyse ei ole yhtiön pilkkomisesta, vaan kasvun pakottamasta rakenteellisesta muutoksesta.

TI ostaa Silicon Labsin miljardikaupassa

Texas Instruments ostaa Silicon Labsin noin 7,5 miljardin dollarin käteiskaupalla. Kauppahinta on 231 dollaria Silicon Labsin osakkeelta. Kauppa edellyttää viranomaisten ja Silicon Labsin osakkeenomistajien hyväksyntää. Järjestelyn odotetaan toteutuvan vuoden 2027 alkupuoliskolla.

Mikä on hybridihätäpuhelu?

Hybridihätäpuhelu eli Hybrid eCall on ajoneuvojen hätäpuhelujärjestelmä, joka käyttää sekä 4G LTE -verkkoa että perinteisiä 2G ja 3G -verkkoja. Tavoite on yksinkertainen. Hätäpuhelu ja siihen liittyvä data saadaan varmasti perille kaikissa olosuhteissa.

FPGA vastaa kvanttiuhkaan ennen kuin se on todellinen

AMD:n uusi Kintex UltraScale+ Gen 2 -FPGA-sukupolvi ei yritä voittaa suorituskykykilpailua pelkillä logiikkasoluilla. Se vastaa ongelmaan, joka on jo näkyvissä mutta vielä harvoin ratkaistu. Miten laitteet suojataan kvanttiajan uhkilta ennen kuin uhka realisoituu?

AI-palvelimen teho-ongelmaan ratkaisu

Tekoälypalvelimissa laskentateho kasvaa nopeammin kuin virransyöttö pysyy perässä. Pullonkaula ei ole enää prosessori vaan teho, tila ja lämpö. Tätä taustaa vasten Microchip Technology toi markkinoille uuden MCPF1525-tehomoduulin.

Ams OSRAM myy analogiset anturinsa Infineonille

Ams OSRAM myy ei-optisen analogi- ja mixed-signal-anturiliiketoimintansa Infineon Technologiesille 570 miljoonan euron käteiskaupalla. Kaupan odotetaan toteutuvan vuoden 2026 toisella neljänneksellä viranomaislupien jälkeen.

Rohde & Schwarz toi 44 gigahertsin analyysin keskiluokkaan

Saksalainen Rohde & Schwarz laajentaa keskiluokan mittalaitetarjontaansa uudella FPL1044 -spektrianalysaattorilla. Laite ulottuu 44 gigahertsiin asti, ja on samalla ensimmäinen tämän hintaluokan analysaattori, joka yltää Ka-alueelle.

Suomalainen Senop toimittaa älytähtäimiä Ranskan puolustusvoimille

Suomalainen Senop on saanut merkittävän tilauksen Ranskan puolustusvoimilta. Ranskan puolustusmateriaalihankinnoista vastaava virasto DGA on valinnut yhtiön AFCD TI -älytähtäinjärjestelmän maavoimien käyttöön.

Kontron tuo integroidun tekoälykiihdytyksen iMTX-emolevylle

Kontron tuo teolliseen iMTX-kokoluokkaan uudenlaisen lähestymistavan tekoälylaskentaan. Yhtiön esittelemä K4131-Px-emolevy perustuu AMDn Ryzen AI Embedded P100 -prosessorisarjaan ja tuo AI-kiihdytyksen suoraan emolevylle ilman erillisiä lisäkortteja.

Vain 5 prosenttia tekoälypiloteista etenee tuotantoon

Yritykset kokeilevat tekoälyä aktiivisesti, mutta vain harva kokeilu päätyy todelliseen tuotantokäyttöön. Arvioiden mukaan ainoastaan noin viisi prosenttia tekoälypiloteista etenee testausvaihetta pidemmälle. Useimmiten syy ei ole itse tekoälyteknologiassa, vaan ratkaisujen ylläpitoon, valvontaan ja kustannusten hallintaan liittyvissä operatiivisissa haasteissa.

VTT:n hankkeessa kehitetään seuraavan sukupolven tehokomponentteja

VTT:n koordinoimassa WIBASE-hankkeessa kehitetään uuden sukupolven tehoelektroniikan komponentteja, joiden ytimessä ovat niin sanotut UWBG-materiaalit eli ultralaajan kaistaeron puolijohteet. Ne edustavat seuraavaa askelta piin sekä nykyisten SiC- ja GaN-komponenttien jälkeen.

DRAM on nyt tärkeä osa autojen hermostoa

Autojen elektroniikka on siirtynyt uuteen vaiheeseen. ADAS-järjestelmät, autonominen ajo ja software-defined vehicle -arkkitehtuuri tekevät DRAM-muistista osan auton hermostoa. Muisti ei enää vain välitä dataa. Se vaikuttaa suoraan siihen, miten ajoneuvo havaitsee ympäristönsä ja tekee päätöksiä.

Euroopan komponenttikauppa on kääntynyt kasvuun

Euroopan elektroniikkakomponenttien jakelumarkkina palasi kasvu-uralle vuoden 2025 viimeisellä neljänneksellä. Markkina kasvoi lähes 10 prosenttia edellisvuoteen verrattuna. Käänne on selvä, mutta ei ongelmaton. DMASS:n mukaan kasvu nojaa osin poikkeuksellisen heikkoon vertailukauteen, ja näkymää varjostavat yhä geopoliittiset riskit ja toimitusketjujen hauraus.

Uusi autosofta syntyy yhä useammin Rustilla

Auton ohjelmisto ei vaihdu yhdessä yössä. Mutta kun uusia toimintoja tehdään, yhä useammin kieli ei ole C tai C++. Se on Rust. Tätä kehitystä vauhdittaa nyt konkreettinen työkalu. HighTec EDV-Systeme julkaisi uuden Rust- ja C/C++-pohjaisen Arm-kehitysalustan, joka on sertifioitu autoteollisuuden tiukimpien turvallisuus- ja kyberturvastandardien mukaan.

Mullistava optinen vahvistin pakkaa valon tiukempaan

Yhdysvalloissa Stanford Universityn fyysikot ovat kehittäneet sirukokoisen optisen vahvistimen, joka pystyy kasvattamaan valosignaalin voimakkuuden satakertaiseksi hyvin pienellä tehonkulutuksella. Tutkimus on julkaistu Nature-lehdessä.

Wi-Fi 7 yleistyy hyvin nopeasti

Wi-Fi 7 on leviämässä yritysverkoissa poikkeuksellisen kovaa vauhtia. Markkinatutkimusyhtiö Dell’Oro Group arvioi, että Wi-Fi 7:n käyttöönotto huipentuu vuonna 2029. Tahti on nopein sitten Wi-Fi 4 -standardin läpimurron vuonna 2013.

Eikö 8 bittiä enää riitä? Tässä vastaus

Vielä hetki sitten 8-bittinen mikrokontrolleri riitti useimpiin ohjaussovelluksiin. Nyt vaatimukset ovat toiset. Lisää liitäntöjä, enemmän reaaliaikaisuutta, parempaa häiriönsietoa ja kasvavaa turvallisuusvaatimusten painetta. Tässä kohtaa moni kysyy, onko 8 bittiä enää tarpeeksi.

VTT:n johtamassa hankkeessa kehitetään 200 kubitin moduuli

VTT johtaa uutta EU-rahoitteista SUPREME-hanketta, jossa kehitetään 200 kubitin 3D-integroitu suprajohtava kvanttimoduuli. Kyseessä on merkittävä askel kohti kvanttiteknologian teollista valmistusta Euroopassa.

IoT-modeemien asetukset vaikuttavat ratkaisevasti virrankulutukseen

IoT-laitteen virrankulutus ei määräydy vain käytetyn piirisarjan perusteella. Ratkaisevaa on se, miten modeemi ja koko laite on konfiguroitu firmware-tasolla. Sama LTE-M- tai NB-IoT-modeemi voi kuluttaa milliampeereja tai vain kymmeniä mikroampeereja pelkästään asetuksia muuttamalla.

Tältä muistitikulta ei voi varastaa dataa

Kingston on vienyt USB-muistin tietoturvan tasolle, jota käytetään viranomais- ja puolustussektorilla. Yhtiön IronKey Keypad 200 -sarja on saanut FIPS 140-3 Level 3 -sertifioinnin. Käytännössä tämä tarkoittaa, että dataa ei voi lukea, vaikka laitteen varastaisi.

bonus # recom webb mobox
2026  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Älyä virtaamien mittaukseen

Virtaamamittaus on monissa laitteissa kriittinen mutta usein ongelmallinen toiminto. Perinteiset mekaaniset anturit kuluvat ja jäävät sokeiksi pienille virtausnopeuksille. Ultraäänitekniikkaan perustuvat valmiit moduulit tarjoavat nyt tarkan, huoltovapaan ja helposti integroitavan vaihtoehdon niin kuluttaja- kuin teollisuussovelluksiin.

Lue lisää...

OPINION

Reunatekoäly pakottaa muutoksiin kentällä

Vuosi 2026 muodostuu liikkuville kenttätiimeille käännekohdaksi. Kentällä käytettävä teknologia ei ole enää tukiroolissa, vaan keskeinen osa päätöksentekoa, tehokkuutta ja turvallisuutta. Reunatekoäly, luotettavat yhteydet ja laitetason tietoturva ovat siirtyneet nopeasti vapaaehtoisista valinnoista välttämättömyyksiksi, kirjoittaa Panasonic TOUGHBOOKin Euroopan johtaja Steven Vindevogel.

Lue lisää...

LATEST NEWS

  • Insta on pitkään tehnyt oikeita valintoja
  • TI ostaa Silicon Labsin miljardikaupassa
  • Mikä on hybridihätäpuhelu?
  • FPGA vastaa kvanttiuhkaan ennen kuin se on todellinen
  • AI-palvelimen teho-ongelmaan ratkaisu

NEW PRODUCTS

  • Eikö 8 bittiä enää riitä? Tässä vastaus
  • Maailman pienin 120 watin teholähde DIN-kiskoon
  • Terävä vaste pienessä kotelossa
  • Click-kortilla voidaan ohjata 15 ampeerin teollisuusmoottoreita
  • Pian kännykkäsi erottaa avaimen 11 metrin päästä
 
 

Section Tapet