ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Ajastus menee uusiksi pienissä laitteissa

SiTimen Titan-alustan MEMS-resonaattorit mullistavat 4 miljardin dollarin resonointikomponenttien markkinan. Ne ovat jopa seitsemän kertaa kvartsia pienempiä, mutta samalla kestävämpiä, energiatehokkaampia ja helpompia integroida. Älykelloista lääkinnällisiin implantteihin, IoT-laitteisiin ja Edge AI -sovelluksiin Titan avaa laitevalmistajille uusia mahdollisuuksia suunnitella aiempaa pienempiä, älykkäämpiä ja luotettavampia tuotteita.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Differentiaalisen kohinaluvun mittaus piirianalysaattorilla?

Tietoja
Kirjoittanut Veijo Ojanperä
Julkaistu: 27.10.2020
  • Test & measurement

Mikroaaltoalueen tietoliikennejärjestelmien suorituskykyä voidaan parantaa differentiaalisen kohinaluvun mittausmenetelmillä. Tässä voidaan käyttää Anritsun VectorStar-piirianalysaattoria.

Artikkelin kirjoittaja Christian Sattlerilla on yli 35 vuoden kokemus korkeataajuisesta ja mikroaaltotekniikasta. Hän on työskennellyt kehitysinsinöörinä, palvelupäällikkönä, myynti-insinöörinä ja johtaa tällä hetkellä RF- ja mikroaaltoalueen suunnitteluryhmää. Anritsun palveluksessa Sattler on ollut vuodesta 1995.

On olemassa useita syitä, miksi differentiaalisten aktiivikomponenttien kuten differentiaalisten LNA-vahvistimien käyttö on yleistymässä. Yhtenä syynä voidaan mainita halun parantaa edullisen hintatason mikroaaltoalueen tietoliikennejärjestelmien, langattomien verkkojen ja optisten lähetinvastaanottimien suorituskykyä. Tämän tyyppisille laitteille on jo olemassa erilaisia mittausproseduureja mukaan lukien todelliseen herätteeseen (true mode) perustuvat kompressiomittaukset ja sekamuotoiset S-parametrit (mixed mode). Sen sijaan kohinaparametreihin perustuvat proseduurit ovat kutakuinkin jääneet jälkeen eikä tarjolla ole näiden laitteiden kohinalukujen analysointiin tarkoitettuja standardoituja ratkaisuja. Anritsun esittelemä VectorStar Differential Noise Figure -optio mahdollistaa sen, että piirianalysaattorilla voidaan mitata 3- ja 4-porttisia laitteita, jotka toimivat ns. ”single-ended” muodossa, differentiaalimuodossa ja yhteismuodossa.

Kaksi yleisintä kohinaluvun mittausmenetelmää

On olemassa kaksi keskeisintä menetelmää kohinaluvun mittaamiseksi: Y-kerroin ”Hot-Cold” ja ”Cold-Source” -menetelmät. Vaikka jälkimmäinen menetelmä on tällä hetkellä muodostunut lähes standardimenetelmäksi piirianalysaattorien yhteydessä, on silti hyödyllistä vertailla näiden menetelmien eroja.

  • Y-kerroin ”Hot-Cold” kohinaluvun mittausmenetelmä

Y-kerroin -menetelmä oli suosittu kohinalukumittauksissa, joissa käytetyt kohinalähteet pystyvät tuottamaan pienikohinaisen lähtötehon (Cold = Nc) ja suuremman kohinan omaavan lähtötehon (Hot = Nh). Kohinalähdettä käytetään siten testattavan laitteen tulosignaalina. Näiden kahden tilan mitattujen kohinatehojen suhdetta kutsutaan Y-kertoimeksi (Y = Nh / Nc) ja sen avulla voidaan nopeasti laskea kohinaluku. Eräs Y-kerroin -menetelmän etu on se, ettei siinä tarvitse suorittaa absoluuttisia tehokalibrointeja, koska kaikki laskutoimitukset perustuvat suhdelukuihin. Y-kerroin menetelmän ongelmia ovat kohinalähteen tehdaskalibrointi ja epäsovituksesta aiheutuvat virheet. Näistä saattaa olla seurauksena suuria mittausvirheitä, erityisesti jos testattavien laitteiden tulon sovitus osoittautuu tavallista huonommaksi.

  • ”Cold-Source” kohinaluvun mittausmenetelmä

Cold-Source kohinaluvun mittausmenetelmä kehitettiin, jotta kohinalähteen sijaan saatiin käyttöön paljon yksinkertaisempi ja paremmin ohjattavissa oleva kohinalähde – terminointi huonelämpötilassa.

Kohinaluku voidaan laskea helposti yhtälöstä:

 

 

missä:

  • k on Boltzmannin vakio
  • N on lisätty kohinateho
  • G on vahvistus
  • B on kaistanleveys
  • T0 on asetettu tavallisesti arvoksi 290K

Kohinaluvun laskeminen edellyttää useita vaiheita. Ensin tarvitaan absoluuttinen kohinateho (osoitin N). Toiseksi tarvitaan todellinen mittauskaistanleveys (B). Kolmanneksi vastaanottimen kohinavaikutus on otettava huomioon.

Kuva 1: Vastaanotinkohinan mittaus terminoinnilla (Cold-Source).

Kun vastaanottimen kohina otetaan huomioon, edellä oleva yhtälö voidaan kirjoittaa muotoon:

 

Testattavan laitteen (DUT) vahvistus (G) voidaan helposti ja tarkasti mitata samalla piirianalysaattorilla. Kun kaikki neljä S-parametria (s2p tiedosto) tiedetään, saadaan Y-kerroin -mittauksessa ilmeneviä epäsovituksesta johtuvia virheitä vähennettyä merkittävästi.

Kuva 2: Testattavan laitteen kohinaluvun mittaaminen Cold-Source -menetelmällä.

Differentiaalisen kohinaluvun mittausproseduuri

Ennen differentiaalisen kohinaluvun mittaamisen aloittamista on tärkeää ensin määrittää tutkittavan differentiaalilaitteen tyyppi. Pääsääntöisesti tarkasteltavana on kaksi erilaista skenaariota.

Jos differentiaalilaitteen lähdössä ilmenee korreloimatonta toimintatapaa, mittaamisessa käytetään korreloimatonta menetelmää. Tämä toteutetaan yksinkertaisesti suorittamalla kaksi ”Single ended” kohinalukumittausta.

Jos on epäselvää, esiintyykö korreloimatonta toimintatapaa, tai jos epäillään, että korrelaatiota on jonkin verran olemassa differentiaaliporttien lähtösignaalien välillä, on laitetta parasta pitää korreloituna.

Anritsun VectorStar piirianalysaattori tarjoaa kolme seuraavaa menetelmää differentiaalisen kohinaluvun mittaamiseksi:

1. Korreloimattoman kohinaluvun mittaaminen

Tämä on sovellettavissa, kun laitteessa on kaksi mittausvirheistä puhdasta itsenäistä signaalipolkua, jotka ovat hyvin eristetty kohinan suhteen toisistaan. Korreloimatonta kohinaa omaavan differentiaalilaitteen yhteydessä voidaan käyttää kahta ”single ended” kohinalukumittausta, mikä olikin aikaisemmin tapa määritellä tunnusluvut monille differentiaalilaitteille. Jos laitteessa on korreloituja signaaleja, niitä ei oteta mukaan analyysiin.

 

Kuvassa kaksi VNA-vastaanotinta on yhdistetty esivahvistimeen ja suodattimeen. Vastaanottimen kalibrointi muodostaa absoluuttisen tehoreferenssitason Cold-Source-mittauksille. Koska korrelaatio jätetään huomioimatta, differentiaaliseksi (bd) ja yhteismuotoiseksi (bc) kohinatehoksi saadaan:

2. Korreloidun kohinaluvun menetelmä koherenteilla vastaanottimilla

Käyttämällä VectorStar VNAn aikakoherentteja IF-kanavia on mahdollista saada suoraan korrelaatio tutkittavan laitteen lähtöporttien välillä. Koska kohinan aaltomuodot näytteistetään suoraan IF-prosessoinnin jälkeen, kahden kohinasignaalin välinen korrelaatio saadaan säilymään tiettyjen korjaustasojen jälkeen.

 Kuva 3: Korreloidun kohinamittauksen esittämät koherentit digitoijat.

 

Differentiaaliset ja yhteismuotoiset kohinatehot ovat tässä tapauksessa kompleksilukuja ja ne voidaan esittää seuraavasti:

 

Kuvassa 4 esitetään käytännöllinen mittausjärjestely differentiaalisen kohinaluvun mittaamiseksi VectorStarin avulla.

 

Kuva 4: Differentiaalisen kohinaluvun mittausjärjestelyt VectorStarilla.

Koska b1 ja b2 ovat nyt kompleksilukuja, vaiheen referenssitaso pitää muodostaa. Tämä saadaan helposti tehtyä läpikytkemällä signaali sisäisestä lähteestä kuhunkin vastaanotinlinjaan. Tämä voidaan tehdä yhtä aikaa vastaanottimen kalibroinnin kanssa.

3. Balun-pohjaiset menetelmät

Differentiaalisen kohinalukumittauksen perinteinen lähestymistapa on käyttää balunia tai Combineria ja ”irrottaa” (de-embed) balun lopputuloksesta.

Kuva 5: Differentiaalinen kohinalukumittaus balunin avulla.

Alku on suoraviivainen. Vahvistuksen laskemisessa balunin häviö tulee vain ottaa huomioon ”irrotuksen” (de-embeddingin) kautta:

Tämä oletus pätee vain, jos linjapituudet baluniin ovat yhtä pitkät ja jos balunin balanssi on ideaalinen. Tässä tapauksessa differentiaalisignaali on generoitu perinteistä 2-porttista kohina-analyysiä silmällä pitäen.

Jos balunin balanssi ei ole ideaalinen, seurauksena voi olla merkittäviä virhetilanteita. Ainakin suurtaajuisissa baluneissa ilmenee usein tällainen imbalanssi. Tämän hetken mittausmenetelmät eivät ota huomioon tämäntyylistä imbalanssia, joten balun-pohjaiset menetelmät ovat käytännössä käyttökelvottomia suurilla taajuuksilla. Siinä missä balunin vahvistuksella/häviöllä ei tavallisesti ole suurta merkitystä kohinalukuvirheeseen, sillä on vaikutusta kohinatehoon. Korreloidun ja korreloimattoman kohinatehon välistä eroa voidaan kuvata korrelointiehtona. Simuloimalla nähdään, että suurten amplitudi-imbalanssien (1 dB:iin saakka) vaikutus on vähäinen, mutta vaihe-imbalanssi (esim. 10 astetta) saattaa lisätä kohinaluvun epävarmuutta 0,5 dB:llä.

Kuva 6: Balunin imbalanssin aiheuttama kohinalukuvirhe.

Kun balun-imbalanssia pyritään korjaamaan, saadaan mittaustarkkuutta parannettua. Anritsun VectorStarin tarjoama balun-pohjainen kohinalukumenetelmä on varustettu imbalanssin korjausalgoritmilla. Kahdesta mittausjärjestelystä, joista toinen on ”single ended” kytkentä ja toinen balunilla varustettu normaalikytkentä, on balun-pohjaisen menetelmän tarkkuus selvästi parempi. Tarkkuutta voidaan edelleen parantaa käyttämällä ylimääräisenä mittausvaiheena vaihtuvatuloista (swapped input) kytkentää baluniin.

Kuva 7: Vaihe 1 – ”Single ended” kohinadatan keruu.

Kuva 8: Vaihe 2 – Mittaaminen balunilla normaalikytkennässä.

Differentiaalisen kohinaluvun mittausprosessin käytännön toteutus

Toteutuksen proseduuri on hyvin samankaltainen kuin ”Single ended” kohinalukumittauksessa ja se käsittää neljä vaihetta:

  1. Mittaa testattavan laitteen S-parametrit
  2. Suorita vastaanottimen kalibrointi
  3. Suorita kohinakalibrointi
  4. Mittaa testattava laite

Testattavan laitteen S-parametrimittauksen aikana on tärkeää, että laite ei ole lähelläkään kompressiotilaa. Jotkut transistorit ja LNA-vahvistimet voivat olla voimakkaasti kompressoituneita -35 dBm:n tuloteholla.

Kuva 9: Kohinaluku suhteessa S-parametrin kompressioon.

Differentiaalisen kohinaluvun mittaamisessa tarvitaan kaksi yhdistelmävastaanotinta. Testattavan laitteen 10 – 25 dB:n vahvistuksille yhdistelmävahvistimen 20 dB:n vahvistus on tavallisesti riittävä.

Yhdistelmävastaanottimen absoluuttitehokalibrointi on tarpeen, vaikkakin yksittäistä VNA-analysaattorin sisäistä lähdettä voidaan käyttää. Testattavan laitteen ja esivahvistimien vahvistuksista riippuen tarvitaan tavallisesti -20 ...-50 dBm:n lähtötehoa piirianalysaattorin lähtöportista.

Kuva 10: Vastaanottimen kalibroinnin kokoonpano.

 

Kuten aiemmin todettiin, kohinatehon kalibrointi suoritetaan päätelaitteena olevan yhdistelmävastaanottimen tulo päätettynä (terminoituna). Koska kohinateho muuttuu tavallisesti hitaasti taajuuden funktiona, kalibrointi-interpolointia voidaan soveltaa mukavuussyistä.

Kuva 11: Kohinatehon kalibrointi.

50 ohmin vastus molemmissa tuloissa on ideaalinen testattavan laitteen kytkennässä 100 ohmin differentiaali-impedanssille. Järkevä yleissääntö on pitää päätevastuksen impedanssi 50 ohmissa.

Kuva 12: Tuloportit varustetaan 50 ohmin päätevastuksilla.

Kohinaluvun mittaamisen epätarkkuudet

”Single ended” ja differentiaalisessa kohinalukumittauksissa seuraavat parametrit vaikuttavat mittaamisen epätarkkuuteen:

  1. Absoluuttinen tehonkalibrointi (mukaan lukien epäsovitusvirheet)
  2. Vastaanottimen kalibrointi (epäsovitusvirheet)
  3. Testattavan laitteen vahvistuksen S-parametrin epävakaus
  4. Datan vaihtelu järjestelmän kohinatasosta ja keruujakson pituudesta johtuen
  5. Vastaanottimen lineaarisuus

Lisäksi seuraavat asiat tulee huomioida differentiaalisen kohinaluvun yhteydessä:

  1. Korrelaation pois jättäminen (korreloimaton menetelmä)
  2. Balunin ominaisuuksien tarkkuus
  3. Imbalanssin käsittely (balun-mittauksessa)
  4. Korrelaatiolaskennan epätarkkuudet ja varianssit (suora korrelaatiomenetelmä)

Esimerkkinä mainittakoon, että kun testattavaa laitetta käytetään 20 dB:n vahvistuksella, 20 dB:n paluuhäviöllä (Return loss), 5 dB:n kohinaluvulla ja oletetaan, että testattava laite on korreloimaton, mitään eroa ei ole virhemäärissä havaittavissa käytetään sitten korreloimatonta tai suoraan korreloitua menetelmää. Jos kuitenkin käytetään balunin karakterisoinnista aiheutuu virhettä merkittävissä määrin:

  • Korreloimaton menetelmä: 0,4 dB virhe
  • Suoraan korreloitu menetelmä: 0,4 dB virhe
  • Balun-pohjainen menetelmä: 0,5 dB virhe (oletuksena 15 dB RL ja 0,5 dB liitäntähäviöitä)

(Tässä esimerkissä käytettiin suuren vahvistuksen ja 5 dB:n kohinaluvun omaavaa vastaanotinta 3 kHz:n IF-kaistalla ja 3000 RMS-pisteellä.)

Kun käytetään samoja parametreja suuresti korreloidulla testattavalla laitteella, mittausvirheet ovat paljon merkittävämpiä ja eroavat toisistaan eri menetelmillä:

  • Korreloimaton menetelmä: 3,1 dB virhe
  • Suoraan korreloitu menetelmä: 0,6 dB virhe
  • Yksinkertainen balun-menetelmä: 1,1 dB virhe
  • Korreloitu balun-menetelmä: 0,7 dB virhe

Yhteenvetona voidaan todeta, että ainoastaan koherentteja vastaanottimia käyttävällä suoraan korreloidulla menetelmällä esiintyy vähiten mittausvirhettä, joten vain sillä voidaan taata minkä tahansa differentiaalisen testattavan laitteen todellinen kohinaluku.

Kuva 13: Kokeiden vertailu.

Cold-Source -menetelmällä voidaan suorittaa kohinaluvun mittaaminen myös suurilla taajuusalueilla. Tämä mahdollistaa monia uudenlaisia mahdolisuuksia laitteiden karakterisoinnille E- ja W-kaistan taajuuksilla.

Seuraavassa kuvassa esitetään kohinalukumittauksen kokoonpano 100 GHz:llä Anritsun VectorStar VNA-analysaattoria käyttäen:

 

Differentiaaliselle W-kaistan vahvistimelle tehtiin mittaukset käyttämällä VectorStarin kolmea erilaista kohinalukumenetelmää ja tulosten vertailu esitetään alla.

Kuva 14: Esimerkki W-kaistan differentiaalisista kohinaluvuista.

Differentiaalisen korreloidun menetelmän edut ovat selvästi nähtävissä.

Johtopäätös

Differentiaalisesta kohinaluvun mittaamisesta on tulossa yhä tärkeämpää ja virallisten standardien puuttumisesta huolimatta edellä kuvatut menetelmät ovat ristiriidattomia ja suhteellisen käytännöllisiä. VectorStar-analysaattoriin saatavissa olevat uudemmat menetelmät mahdollistavat testattavien laitteiden lähtöjen korrelaation paremman karakterisoinnin ja mittausten parantamisen. Epätarkkuudet ovat suoraviivaisesti seurausta korreloimattomista mittauksista.

Seuraava iso askel tulee olemaan vastausten löytäminen differentiaalisten kohinaparametrien aiheuttamiin haasteisiin. Useat tutkimusryhmät työskentelevät parhaillaan aktiivisesti näiden haasteiden parissa.

MORE NEWS

Valmis algoritmi ihmisten tunnistamiseen tulee anturin mukana

Melexis on julkaissut MLX90642-lämpöanturiinsa valmiin, maksuttoman algoritmin, joka mahdollistaa ihmisten havaitsemisen, laskemisen ja paikantamisen ilman perinteisiä kameroita. Ratkaisu tuo seuraavan sukupolven havaitsemisen suoraan anturitasolle ja poistaa tarpeen kehittää omia lämpökuva-analytiikan algoritmeja.

Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä

Forbesissa julkaistussa artikkelissa Nokian Cloud and Network Services -yksikön tuote- ja teknologiajohtaja Kal De varoittaa, että teleoperaattoreiden on hylättävä perinteinen, reaktiivinen kyberturvamalli. Nykyiset uhkat kuten tekoälyn kiihdyttämät hyökkäykset ja nopeasti lähestyvä kvanttilaskennan murros pakottavat siirtymään ennakoiviin, automaattisiin puolustusmenetelmiin.

Microchipin uusi piiri toimii älykkäänä virran vahtikoirana

Microchip on esitellyt kaksi digitaalista tehonvalvontapiiriä, jotka mittaavat kannettavien ja energiarajoitteisten laitteiden virrankulutusta kuluttamatta itse käytännössä lainkaan tehoa. Uudet PAC1711- ja PAC1811-piirit toimivat itsenäisinä, MCU:sta riippumattomina ”älykkäinä virran vahtikoirina”, jotka herättävät prosessorin vasta, kun järjestelmässä tapahtuu jotakin merkittävää.

Sähkömittareista tuttu radio laajenee uusille alueille

STMicroelectronics laajentaa tunnetun ST87M01-NB-IoT-radiomoduulinsa käyttökohteita älymittareista kohti yleisiä IoT-ratkaisuja. Yhtiö on esitellyt kaksi uutta versiota moduulista sekä päivitetyn kehitysekosysteemin, joiden avulla kehittäjät voivat tuoda kapeakaistaisen NB-IoT-yhteyden nopeasti osaksi logistiikan, teollisuuden, energiaverkkojen ja kuluttajalaitteiden sovelluksia.

Tekoälyrobotteja nopeasti Linuxilla

Avocado-käyttöjärjestelmäänsä sulautettujen laitteiden valmistajille kauppaava Peridio esitteli Embedded World North America -messuilla uuden Jetson-pohjaisen tekoälyä hyödyntävän robottidemon. Demo havainnollisti, miten sen Avocado OS -käyttöjärjestelmä ja laitehallinta-alusta lyhentävät sulautettujen AI-laitteiden tuotantovaiheeseen siirtymisen jopa kuukausista päiviin.

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

Sähköinen liikenne on siirtynyt uuteen aikakauteen sekä maailmalla että Euroopassa. Gartnerin tuoreen ennusteen mukaan maailman teillä liikkuu ensi vuonna yli 116 miljoonaa sähköajoneuvoa, kun taas TechGaged Research raportoi, että polttomoottorit ovat nyt virallisesti vähemmistössä Euroopan unionissa.

Winbond vie teollisuuden DDR4-muistit uudelle tasolle

Winbond on esitellyt uuden 8 gigabitin DDR4-muistin, joka nostaa teollisuus- ja sulautettujen järjestelmien perinteisen DDR4-teknologian aivan uudelle suorituskyky- ja tehokkuustasolle. Yhtiö valmistaa uutuuden omalla 16 nanometrin prosessillaan, mikä tuo pienemmän sirukoon, alhaisemman virrankulutuksen ja paremman signaalieheyden – ominaisuuksia, joita teollisuus edellyttää pitkän elinkaaren laitteistoilta.

Ultravakaa kellosignaali auttaa tunnistamaan GPS-häirinnän

GNSS-vastaanottimien suojautuminen sekä häirintää että harhautusta vastaan paranee merkittävästi, kun vastaanotin käyttää tavallista kvartsikelloa tarkempaa ja stabiilimpaa referenssikelloa. Tähän tarpeeseen vastaa SiTimen uusi Endura Super-TCXO ENDR-TTT, joka on suunniteltu erityisesti ilmailun, puolustuksen ja teollisuuden PNT-sovelluksiin.

Tämä vuosi kuuluu iPhonelle, ensi vuonna koko markkina kutistuu

Applen vahva vuosi nostaa älypuhelinmarkkinat takaisin kasvuun, mutta edessä siintää jälleen notkahdus. IDC:n tuoreiden lukujen mukaan maailmanlaajuiset älypuhelintoimitukset kasvavat vuonna 2025 yhteensä 1,5 prosenttia 1,25 miljardiin laitteeseen. Suurin selittävä tekijä on Applen ennätysvuosi: iPhone 17 -sarjan vetämä kysyntä nostaa yhtiön toimitukset 247,4 miljoonaan laitteeseen, mikä merkitsee 6,1 prosentin vuosikasvua.

Tässä pahimmat virheet piirikortin suunnittelussa

PCB-suunnittelun virheet eivät aiheuta vain pieniä häiriöitä. Ne voivat rikkoa toiminnallisuuden, pysäyttää sertifioinnit, syödä akut tyhjiksi, heikentää luotettavuutta tai jopa tehdä tuotteesta mahdottoman valmistaa. Näin muistuttaa suunnitteluasiantuntija John Teel, joka käy uudella videollaan läpi 21 yleisintä ja vakavinta virhettä, joita hän näkee toistuvasti sadoissa tekemissään suunnittelukatselmoinneissa.

Vakava haavoittuvuus React- ja Next.js-sovelluksissa – päivitä heti

React-tiimi on julkaissut erittäin vakavan tietoturvahaavoittuvuuden, joka koskee React Server Components -arkkitehtuuria sekä sen varaan rakentuvia kehitysalustoja, erityisesti Next.js-sovelluksia. Haavoittuvuus mahdollistaa täysin autentikoimattoman etähyökkäyksen, jonka avulla hyökkääjä voi suorittaa mielivaltaista koodia palvelimella.

Autojen sisävalaistukseen mullistava ratkaisu

DP Patterning ja ams OSRAM ovat esitelleet uudenlaisen ratkaisun, joka voi muuttaa autojen sisävalaistuksen suunnittelua merkittävästi. Yhtiöiden kehittämä konsepti esiteltiin ensi kertaa marraskuussa Productronica-messuilla Münchenissä.

Lataa laitteet auringon- tai sisävalosta

Belgialainen e-peas on esitellyt AEM15820-energiankeruupiirin, joka on suunniteltu hyödyntämään hybridiaurinkokennojen koko tehoalueen. Hybridikennojen etuna on kyky tuottaa energiaa sekä sisävalaistuksessa mikrowattitasolla että suorassa auringonpaisteessa useiden wattien teholla. Uusi PMIC pystyy käsittelemään tämän koko skaalan, mikä avaa tien käytännössä itseään lataaville kuluttaja- ja IoT-laitteille.

Tria tuo tehoa verkon reunalle DragonWing-moduuleilla

Avnetin entinen sulatuettujen ryhmä eli nykyinen Tria Technologies tuo ensimmäiset Qualcomm Dragonwing IQ-6-sarjaan perustuvat moduulit markkinoille. Uudet SM2S-IQ615- ja OSM-LF-IQ615-moduulit tarjoavat teollisuusluokan suorituskykyä ja modernia AI-kiihdytystä SMARC- ja OSM-moduuleina.

Suomalaisille kvanttialgoritmeille kysyntää maailmalla

Suomalainen kvanttialgoritmiyhtiö QMill laajentaa kvanttialgoritmitutkimuksen kansainvälistä yhteistyötä merkittävällä tavalla. Yhtiö on solminut strategisen tutkimussopimuksen kanadalaisen École de technologie supérieure (ÉTS) -yliopiston kanssa edistääkseen kvanttilaskennan käytännön sovelluksia ja validoidakseen algoritmeja todellisia teollisia haasteita varten. Sopimus vahvistaa entisestään suomalaisosaamisen kysyntää globaaleissa kvanttikeskuksissa.

Kiinnostavatko humanoidirobotit? Ensi viikolla ilmainen webinaari

Mitä pitää ottaa huomioon, jos suunnittelee ihmisen tavoin käyttäytyvää humanoidirobottia? Miten signaalit reititetään? Miten syötetään sähköä? Miten liittimet valitaan, jotta laite kestää siihen kohdistuvat rasitukset?

Minikokoinen kondensaattori yli kilovoltin SiC-sovelluksiin

Murata on esitellyt maailman ensimmäisen 15 nF:n ja 1,25 kilovoltin jännitekestolla varustetun C0G-tyypin monikerroskeramiikkakondensaattorin (MLCC), joka on pakattu poikkeuksellisen pieneen 1210-kokoluokkaan (3,2 × 2,5 mm). Uutuus vastaa suoraan SiC-MOSFET-tekniikan kasvavaan tarpeeseen, jossa korkeajännitteiset ja erittäin vähän häviävät komponentit ovat välttämättömiä resonanssi- ja snubber-piireissä.

LUMI-tekoälyhubi avautui Otaniemessä

LUMI-tekoälytehtaan hubiprojektin päällikkö Eeva Harjula (CSC) korostaa, että uusi Otaniemen hubi tuo tekoälyn mahdollisuudet konkreettisesti lähemmäs opiskelijoita, startup-yrityksiä ja pk-sektoria. - Tavoitteena on luoda kohtaamispaikka, jossa syntyy uusia ideoita ja yhteistyötä suomalaisen tutkimuksen, elinkeinoelämän ja yhteiskunnan hyväksi. Otaniemen hubi toimii LUMI-tekoälytehtaan päähubina” Harjula sanoo.

Wi-Fi 8 -piirien testaaminen voi alkaa

Rohde & Schwarz ja Broadcom ovat ottaneet ratkaisevan askeleen kohti seuraavan sukupolven Wi-Fi 8 -laitteita. Broadcom on validoinut R&S:n uuden CMP180-radiotesterin Wi-Fi 8 -piirien kehitys- ja tuotantotestaukseen, mikä tarkoittaa, että ensimmäisiä 802.11bn-siruja voidaan alkaa testata ja optimoida jo ennen standardin lopullista valmistumista.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • Valmis algoritmi ihmisten tunnistamiseen tulee anturin mukana
  • Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä
  • Microchipin uusi piiri toimii älykkäänä virran vahtikoirana
  • Sähkömittareista tuttu radio laajenee uusille alueille
  • Tekoälyrobotteja nopeasti Linuxilla

NEW PRODUCTS

  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
  • Kilowatti tehoa irti USB-tikun kokoisesta muuntimesta
  • Älykäs sulake tekee sähköautoista turvallisempia
 
 

Section Tapet