logotypen
 
 

IN FOCUS

Suojaa datasi kunnolla

SSD-levyt tarjoavat luontaisesti korkean luotettavuuden kaikentyyppisiin sovelluksiin, aina aloitustason kuluttajalaitteista kriittisiin järjestelmiin. Asianmukaiset tietosuojamekanismit voivat maksimoida levyn käyttöiän toteuttamalla ennaltaehkäiseviä toimenpiteitä tarpeen mukaan, kertoo Silicon Motion artikkelissaan.

Lue lisää...

Mikroaaltoalueen tietoliikennejärjestelmien suorituskykyä voidaan parantaa differentiaalisen kohinaluvun mittausmenetelmillä. Tässä voidaan käyttää Anritsun VectorStar-piirianalysaattoria.

Artikkelin kirjoittaja Christian Sattlerilla on yli 35 vuoden kokemus korkeataajuisesta ja mikroaaltotekniikasta. Hän on työskennellyt kehitysinsinöörinä, palvelupäällikkönä, myynti-insinöörinä ja johtaa tällä hetkellä RF- ja mikroaaltoalueen suunnitteluryhmää. Anritsun palveluksessa Sattler on ollut vuodesta 1995.

On olemassa useita syitä, miksi differentiaalisten aktiivikomponenttien kuten differentiaalisten LNA-vahvistimien käyttö on yleistymässä. Yhtenä syynä voidaan mainita halun parantaa edullisen hintatason mikroaaltoalueen tietoliikennejärjestelmien, langattomien verkkojen ja optisten lähetinvastaanottimien suorituskykyä. Tämän tyyppisille laitteille on jo olemassa erilaisia mittausproseduureja mukaan lukien todelliseen herätteeseen (true mode) perustuvat kompressiomittaukset ja sekamuotoiset S-parametrit (mixed mode). Sen sijaan kohinaparametreihin perustuvat proseduurit ovat kutakuinkin jääneet jälkeen eikä tarjolla ole näiden laitteiden kohinalukujen analysointiin tarkoitettuja standardoituja ratkaisuja. Anritsun esittelemä VectorStar Differential Noise Figure -optio mahdollistaa sen, että piirianalysaattorilla voidaan mitata 3- ja 4-porttisia laitteita, jotka toimivat ns. ”single-ended” muodossa, differentiaalimuodossa ja yhteismuodossa.

Kaksi yleisintä kohinaluvun mittausmenetelmää

On olemassa kaksi keskeisintä menetelmää kohinaluvun mittaamiseksi: Y-kerroin ”Hot-Cold” ja ”Cold-Source” -menetelmät. Vaikka jälkimmäinen menetelmä on tällä hetkellä muodostunut lähes standardimenetelmäksi piirianalysaattorien yhteydessä, on silti hyödyllistä vertailla näiden menetelmien eroja.

  • Y-kerroin ”Hot-Cold” kohinaluvun mittausmenetelmä

Y-kerroin -menetelmä oli suosittu kohinalukumittauksissa, joissa käytetyt kohinalähteet pystyvät tuottamaan pienikohinaisen lähtötehon (Cold = Nc) ja suuremman kohinan omaavan lähtötehon (Hot = Nh). Kohinalähdettä käytetään siten testattavan laitteen tulosignaalina. Näiden kahden tilan mitattujen kohinatehojen suhdetta kutsutaan Y-kertoimeksi (Y = Nh / Nc) ja sen avulla voidaan nopeasti laskea kohinaluku. Eräs Y-kerroin -menetelmän etu on se, ettei siinä tarvitse suorittaa absoluuttisia tehokalibrointeja, koska kaikki laskutoimitukset perustuvat suhdelukuihin. Y-kerroin menetelmän ongelmia ovat kohinalähteen tehdaskalibrointi ja epäsovituksesta aiheutuvat virheet. Näistä saattaa olla seurauksena suuria mittausvirheitä, erityisesti jos testattavien laitteiden tulon sovitus osoittautuu tavallista huonommaksi.

  • ”Cold-Source” kohinaluvun mittausmenetelmä

Cold-Source kohinaluvun mittausmenetelmä kehitettiin, jotta kohinalähteen sijaan saatiin käyttöön paljon yksinkertaisempi ja paremmin ohjattavissa oleva kohinalähde – terminointi huonelämpötilassa.

Kohinaluku voidaan laskea helposti yhtälöstä:

 

 

missä:

  • k on Boltzmannin vakio
  • N on lisätty kohinateho
  • G on vahvistus
  • B on kaistanleveys
  • T0 on asetettu tavallisesti arvoksi 290K

Kohinaluvun laskeminen edellyttää useita vaiheita. Ensin tarvitaan absoluuttinen kohinateho (osoitin N). Toiseksi tarvitaan todellinen mittauskaistanleveys (B). Kolmanneksi vastaanottimen kohinavaikutus on otettava huomioon.

Kuva 1: Vastaanotinkohinan mittaus terminoinnilla (Cold-Source).

Kun vastaanottimen kohina otetaan huomioon, edellä oleva yhtälö voidaan kirjoittaa muotoon:

 

Testattavan laitteen (DUT) vahvistus (G) voidaan helposti ja tarkasti mitata samalla piirianalysaattorilla. Kun kaikki neljä S-parametria (s2p tiedosto) tiedetään, saadaan Y-kerroin -mittauksessa ilmeneviä epäsovituksesta johtuvia virheitä vähennettyä merkittävästi.

Kuva 2: Testattavan laitteen kohinaluvun mittaaminen Cold-Source -menetelmällä.

Differentiaalisen kohinaluvun mittausproseduuri

Ennen differentiaalisen kohinaluvun mittaamisen aloittamista on tärkeää ensin määrittää tutkittavan differentiaalilaitteen tyyppi. Pääsääntöisesti tarkasteltavana on kaksi erilaista skenaariota.

Jos differentiaalilaitteen lähdössä ilmenee korreloimatonta toimintatapaa, mittaamisessa käytetään korreloimatonta menetelmää. Tämä toteutetaan yksinkertaisesti suorittamalla kaksi ”Single ended” kohinalukumittausta.

Jos on epäselvää, esiintyykö korreloimatonta toimintatapaa, tai jos epäillään, että korrelaatiota on jonkin verran olemassa differentiaaliporttien lähtösignaalien välillä, on laitetta parasta pitää korreloituna.

Anritsun VectorStar piirianalysaattori tarjoaa kolme seuraavaa menetelmää differentiaalisen kohinaluvun mittaamiseksi:

1. Korreloimattoman kohinaluvun mittaaminen

Tämä on sovellettavissa, kun laitteessa on kaksi mittausvirheistä puhdasta itsenäistä signaalipolkua, jotka ovat hyvin eristetty kohinan suhteen toisistaan. Korreloimatonta kohinaa omaavan differentiaalilaitteen yhteydessä voidaan käyttää kahta ”single ended” kohinalukumittausta, mikä olikin aikaisemmin tapa määritellä tunnusluvut monille differentiaalilaitteille. Jos laitteessa on korreloituja signaaleja, niitä ei oteta mukaan analyysiin.

 

Kuvassa kaksi VNA-vastaanotinta on yhdistetty esivahvistimeen ja suodattimeen. Vastaanottimen kalibrointi muodostaa absoluuttisen tehoreferenssitason Cold-Source-mittauksille. Koska korrelaatio jätetään huomioimatta, differentiaaliseksi (bd) ja yhteismuotoiseksi (bc) kohinatehoksi saadaan:

2. Korreloidun kohinaluvun menetelmä koherenteilla vastaanottimilla

Käyttämällä VectorStar VNAn aikakoherentteja IF-kanavia on mahdollista saada suoraan korrelaatio tutkittavan laitteen lähtöporttien välillä. Koska kohinan aaltomuodot näytteistetään suoraan IF-prosessoinnin jälkeen, kahden kohinasignaalin välinen korrelaatio saadaan säilymään tiettyjen korjaustasojen jälkeen.

 Kuva 3: Korreloidun kohinamittauksen esittämät koherentit digitoijat.

 

Differentiaaliset ja yhteismuotoiset kohinatehot ovat tässä tapauksessa kompleksilukuja ja ne voidaan esittää seuraavasti:

 

Kuvassa 4 esitetään käytännöllinen mittausjärjestely differentiaalisen kohinaluvun mittaamiseksi VectorStarin avulla.

 

Kuva 4: Differentiaalisen kohinaluvun mittausjärjestelyt VectorStarilla.

Koska b1 ja b2 ovat nyt kompleksilukuja, vaiheen referenssitaso pitää muodostaa. Tämä saadaan helposti tehtyä läpikytkemällä signaali sisäisestä lähteestä kuhunkin vastaanotinlinjaan. Tämä voidaan tehdä yhtä aikaa vastaanottimen kalibroinnin kanssa.

3. Balun-pohjaiset menetelmät

Differentiaalisen kohinalukumittauksen perinteinen lähestymistapa on käyttää balunia tai Combineria ja ”irrottaa” (de-embed) balun lopputuloksesta.

Kuva 5: Differentiaalinen kohinalukumittaus balunin avulla.

Alku on suoraviivainen. Vahvistuksen laskemisessa balunin häviö tulee vain ottaa huomioon ”irrotuksen” (de-embeddingin) kautta:

Tämä oletus pätee vain, jos linjapituudet baluniin ovat yhtä pitkät ja jos balunin balanssi on ideaalinen. Tässä tapauksessa differentiaalisignaali on generoitu perinteistä 2-porttista kohina-analyysiä silmällä pitäen.

Jos balunin balanssi ei ole ideaalinen, seurauksena voi olla merkittäviä virhetilanteita. Ainakin suurtaajuisissa baluneissa ilmenee usein tällainen imbalanssi. Tämän hetken mittausmenetelmät eivät ota huomioon tämäntyylistä imbalanssia, joten balun-pohjaiset menetelmät ovat käytännössä käyttökelvottomia suurilla taajuuksilla. Siinä missä balunin vahvistuksella/häviöllä ei tavallisesti ole suurta merkitystä kohinalukuvirheeseen, sillä on vaikutusta kohinatehoon. Korreloidun ja korreloimattoman kohinatehon välistä eroa voidaan kuvata korrelointiehtona. Simuloimalla nähdään, että suurten amplitudi-imbalanssien (1 dB:iin saakka) vaikutus on vähäinen, mutta vaihe-imbalanssi (esim. 10 astetta) saattaa lisätä kohinaluvun epävarmuutta 0,5 dB:llä.

Kuva 6: Balunin imbalanssin aiheuttama kohinalukuvirhe.

Kun balun-imbalanssia pyritään korjaamaan, saadaan mittaustarkkuutta parannettua. Anritsun VectorStarin tarjoama balun-pohjainen kohinalukumenetelmä on varustettu imbalanssin korjausalgoritmilla. Kahdesta mittausjärjestelystä, joista toinen on ”single ended” kytkentä ja toinen balunilla varustettu normaalikytkentä, on balun-pohjaisen menetelmän tarkkuus selvästi parempi. Tarkkuutta voidaan edelleen parantaa käyttämällä ylimääräisenä mittausvaiheena vaihtuvatuloista (swapped input) kytkentää baluniin.

Kuva 7: Vaihe 1 – ”Single ended” kohinadatan keruu.

Kuva 8: Vaihe 2 – Mittaaminen balunilla normaalikytkennässä.

Differentiaalisen kohinaluvun mittausprosessin käytännön toteutus

Toteutuksen proseduuri on hyvin samankaltainen kuin ”Single ended” kohinalukumittauksessa ja se käsittää neljä vaihetta:

  1. Mittaa testattavan laitteen S-parametrit
  2. Suorita vastaanottimen kalibrointi
  3. Suorita kohinakalibrointi
  4. Mittaa testattava laite

Testattavan laitteen S-parametrimittauksen aikana on tärkeää, että laite ei ole lähelläkään kompressiotilaa. Jotkut transistorit ja LNA-vahvistimet voivat olla voimakkaasti kompressoituneita -35 dBm:n tuloteholla.

Kuva 9: Kohinaluku suhteessa S-parametrin kompressioon.

Differentiaalisen kohinaluvun mittaamisessa tarvitaan kaksi yhdistelmävastaanotinta. Testattavan laitteen 10 – 25 dB:n vahvistuksille yhdistelmävahvistimen 20 dB:n vahvistus on tavallisesti riittävä.

Yhdistelmävastaanottimen absoluuttitehokalibrointi on tarpeen, vaikkakin yksittäistä VNA-analysaattorin sisäistä lähdettä voidaan käyttää. Testattavan laitteen ja esivahvistimien vahvistuksista riippuen tarvitaan tavallisesti -20 ...-50 dBm:n lähtötehoa piirianalysaattorin lähtöportista.

Kuva 10: Vastaanottimen kalibroinnin kokoonpano.

 

Kuten aiemmin todettiin, kohinatehon kalibrointi suoritetaan päätelaitteena olevan yhdistelmävastaanottimen tulo päätettynä (terminoituna). Koska kohinateho muuttuu tavallisesti hitaasti taajuuden funktiona, kalibrointi-interpolointia voidaan soveltaa mukavuussyistä.

Kuva 11: Kohinatehon kalibrointi.

50 ohmin vastus molemmissa tuloissa on ideaalinen testattavan laitteen kytkennässä 100 ohmin differentiaali-impedanssille. Järkevä yleissääntö on pitää päätevastuksen impedanssi 50 ohmissa.

Kuva 12: Tuloportit varustetaan 50 ohmin päätevastuksilla.

Kohinaluvun mittaamisen epätarkkuudet

”Single ended” ja differentiaalisessa kohinalukumittauksissa seuraavat parametrit vaikuttavat mittaamisen epätarkkuuteen:

  1. Absoluuttinen tehonkalibrointi (mukaan lukien epäsovitusvirheet)
  2. Vastaanottimen kalibrointi (epäsovitusvirheet)
  3. Testattavan laitteen vahvistuksen S-parametrin epävakaus
  4. Datan vaihtelu järjestelmän kohinatasosta ja keruujakson pituudesta johtuen
  5. Vastaanottimen lineaarisuus

Lisäksi seuraavat asiat tulee huomioida differentiaalisen kohinaluvun yhteydessä:

  1. Korrelaation pois jättäminen (korreloimaton menetelmä)
  2. Balunin ominaisuuksien tarkkuus
  3. Imbalanssin käsittely (balun-mittauksessa)
  4. Korrelaatiolaskennan epätarkkuudet ja varianssit (suora korrelaatiomenetelmä)

Esimerkkinä mainittakoon, että kun testattavaa laitetta käytetään 20 dB:n vahvistuksella, 20 dB:n paluuhäviöllä (Return loss), 5 dB:n kohinaluvulla ja oletetaan, että testattava laite on korreloimaton, mitään eroa ei ole virhemäärissä havaittavissa käytetään sitten korreloimatonta tai suoraan korreloitua menetelmää. Jos kuitenkin käytetään balunin karakterisoinnista aiheutuu virhettä merkittävissä määrin:

  • Korreloimaton menetelmä: 0,4 dB virhe
  • Suoraan korreloitu menetelmä: 0,4 dB virhe
  • Balun-pohjainen menetelmä: 0,5 dB virhe (oletuksena 15 dB RL ja 0,5 dB liitäntähäviöitä)

(Tässä esimerkissä käytettiin suuren vahvistuksen ja 5 dB:n kohinaluvun omaavaa vastaanotinta 3 kHz:n IF-kaistalla ja 3000 RMS-pisteellä.)

Kun käytetään samoja parametreja suuresti korreloidulla testattavalla laitteella, mittausvirheet ovat paljon merkittävämpiä ja eroavat toisistaan eri menetelmillä:

  • Korreloimaton menetelmä: 3,1 dB virhe
  • Suoraan korreloitu menetelmä: 0,6 dB virhe
  • Yksinkertainen balun-menetelmä: 1,1 dB virhe
  • Korreloitu balun-menetelmä: 0,7 dB virhe

Yhteenvetona voidaan todeta, että ainoastaan koherentteja vastaanottimia käyttävällä suoraan korreloidulla menetelmällä esiintyy vähiten mittausvirhettä, joten vain sillä voidaan taata minkä tahansa differentiaalisen testattavan laitteen todellinen kohinaluku.

Kuva 13: Kokeiden vertailu.

Cold-Source -menetelmällä voidaan suorittaa kohinaluvun mittaaminen myös suurilla taajuusalueilla. Tämä mahdollistaa monia uudenlaisia mahdolisuuksia laitteiden karakterisoinnille E- ja W-kaistan taajuuksilla.

Seuraavassa kuvassa esitetään kohinalukumittauksen kokoonpano 100 GHz:llä Anritsun VectorStar VNA-analysaattoria käyttäen:

 

Differentiaaliselle W-kaistan vahvistimelle tehtiin mittaukset käyttämällä VectorStarin kolmea erilaista kohinalukumenetelmää ja tulosten vertailu esitetään alla.

Kuva 14: Esimerkki W-kaistan differentiaalisista kohinaluvuista.

Differentiaalisen korreloidun menetelmän edut ovat selvästi nähtävissä.

Johtopäätös

Differentiaalisesta kohinaluvun mittaamisesta on tulossa yhä tärkeämpää ja virallisten standardien puuttumisesta huolimatta edellä kuvatut menetelmät ovat ristiriidattomia ja suhteellisen käytännöllisiä. VectorStar-analysaattoriin saatavissa olevat uudemmat menetelmät mahdollistavat testattavien laitteiden lähtöjen korrelaation paremman karakterisoinnin ja mittausten parantamisen. Epätarkkuudet ovat suoraviivaisesti seurausta korreloimattomista mittauksista.

Seuraava iso askel tulee olemaan vastausten löytäminen differentiaalisten kohinaparametrien aiheuttamiin haasteisiin. Useat tutkimusryhmät työskentelevät parhaillaan aktiivisesti näiden haasteiden parissa.

MORE NEWS

Näin Teslan ja BYD:n akut eroavat toisistaan

Saksalaisen RWTH Aachenin yliopiston tutkijat ovat tehneet perusteellisen purkuanalyysin kahdesta maailman johtavan sähköautovalmistajan, Teslan ja BYD:n, litiumioniakusta. Tutkimuksessa verrattiin Teslan 4680-sylinterikennoa ja BYD:n Blade-prismaattista kennoa kennotasolla.

Suomalaisyritys tuo yrityksille oman tekoälyn

Suomalainen konsulttitalo Y4 Works on lanseerannut uuden tekoälyratkaisun, Suunta.ai:n, joka tuo organisaatioille niiden oman, asiantuntijamaisen tekoälyn. Toisin kuin yleiset kielimallit, kuten ChatGPT, Suunta.ai oppii yrityksen omasta datasta, haastaa käyttäjäänsä ja toimii kuin digitaalinen liiketoimintakonsultti.

Piikarbidi vähentää tehohäviöitä datakeskuksessa

ON Semiconductor on julkaissut uuden sukupolven tehomoduulin, joka lupaa merkittävästi pienempiä tehohäviöitä ja energiatehokkaampaa käyttöä erityisesti datakeskuksissa ja teollisuussovelluksissa.

Boreo ostaa Elfa Distrelecin Suomen ja Baltian toiminnot

Boreo Oyj on allekirjoittanut sopimuksen Elfa Distrelecin myyntitoimintojen ostamisesta Suomessa, Latviassa, Virossa ja Liettuassa. Kaupan myötä Elfa siirtyy näissä samaan yritysryhmään kuin Yleiselektroniikan toiminnot. Kauppahinnaksi ilmoitetaan 5,5 miljoonaa euroa.

Ruotsalaistutkijoiden vahvistin nostaa kuidun kapasiteetin 10-kertaiseksi

Göteborgilaisen Chalmersin teknillisen korkeakoulun tutkijat ovat kehittäneet uudenlaisen optisen vahvistimen, joka voi moninkertaistaa kuituverkkojen tiedonsiirtokyvyn. Uusi vahvistin mahdollistaa jopa kymmenen kertaa enemmän dataa sekunnissa verrattuna nykyisiin teknologioihin.

Google siirtää sovelluskehityksen selaimeen – tekoäly isossa roolissa

Google esitteli Cloud Next -tapahtumassaan uuden sukupolven sovelluskehitysalustan, Firebase Studion, joka siirtää koko kehitysprosessin selaimeen – suunnittelusta julkaisuun. Uutuus rakentuu vahvasti tekoälyavusteisuuden ympärille ja hyödyntää Googlen omaa Gemini-mallia läpi koko kehityksen.

Trumpin tullit iskevät rankasti suuriin amerikkalaisiin autonvalmistajiin

Yhdysvallat asetti viime viikolla 25 prosentin tuontitullit useista maista tuotaville autoille ja varaosille. Presidentti Trumpin hallinnon ilmoittamat laajat tuontitullit ovat tuomassa autoalalle uudenlaisia haasteita. Vaikka toimenpiteet on nimellisesti suunnattu vahvistamaan kotimaista teollisuutta, tuoreen analyysin mukaan myös Yhdysvaltain omat jättivalmistajat – General Motors, Ford ja Stellantis – ovat merkittävästi alttiita tullien vaikutuksille.

Nokian ja Telian 5G-viipale kattoi kolme maata

Nokia, Telia ja Puolustusvoimat ovat saavuttaneet maailmanlaajuisesti merkittävän teknologisen virstanpylvään toteuttamalla ensimmäisen saumattoman 5G Standalone -verkkoviipaleen (slice) siirron kolmen eri maan välillä toimivassa verkossa. Kokeilu osoittaa, kuinka 5G-teknologiaa voidaan hyödyntää viranomaisviestinnässä myös kansainvälisesti.

Optinen liitäntä tuotiin ensimmäistä kertaa SSD-levylle

Tallennustekniikan kehityksessä saavutettiin merkittävä virstanpylväs, kun KIOXIA, AIO Core ja Kyocera julkistivat ensimmäisen toimivan SSD-levyn, jossa käytetään optista liitäntää. Uusi prototyyppi yhdistää PCIe 5.0 -väylän ja valoon perstuvan optisen tiedonsiirron, mikä tekee siitä maailman ensimmäisen laatuaan.

Joskus yksittäinen komponentti voi olla vaarallinen takaovi

Yritykset investoivat valtavasti kyberturvallisuuteen suojatakseen verkkojaan ja sovelluksiaan. Silti, kaikista suojaustoimista huolimatta, verkkorikolliset onnistuvat vuosi vuodelta entistä paremmin. Miten tämä on mahdollista, kysyy Lenovon tietoturva-asiantuntija Steven Antoniou?

Trump haluaa nopeuttaa miljardi-investointeja Yhdysvaltain puolijohdeteollisuuteen

Yhdysvaltain presidentti Donald Trump on antanut uuden presidentin asetuksen, jolla perustetaan United States Investment Accelerator -niminen virasto vauhdittamaan miljardiluokan investointeja maahan. Tavoitteena on houkutella sekä kotimaisia että ulkomaisia yrityksiä sijoittamaan erityisesti strategisesti tärkeisiin aloihin, kuten puolijohdeteollisuuteen.

Ethernet aikoo vallata autot

CAN-väylä on hallinnut autoja pitkään, mutta moni uskoo kaistatarpeen vaativan jatkossa Ethernetiä. Tätä silmällä pitäen Infineon on ostanut Marvellin aujoneuvojen Ethernet-liiketoiminnan 2,5 miljardilla dollarilla. Kauppa kattaa Marvellin Brightlane-tuotesarjan ja siihen liittyvät varat, ja sen odotetaan toteutuvan vuoden 2025 aikana.

STMicroelectronics julkisti kevyemmän version MP25-prosessorista

STMicroelectronics on tuonut markkinoille uuden STM32MP23-mikroprosessorisarjan, joka täydentää viime vuonna julkaistua MP25-sarjaa. Uutuusprosessori tarjoaa tehokkaan ja taloudellisen vaihtoehdon teollisuuden ja esineiden internetin (IoT) älykkäisiin reunalaitteisiin, koneoppimiseen ja kehittyneisiin käyttöliittymäratkaisuihin.

Androidin avustin voi muuttua vaaralliseksi takaoveksi

Androidin esteettömyyspalvelu – jonka tarkoitus on auttaa käyttäjiä käyttämään puhelinta paremmin esimerkiksi näkö- tai liikuntarajoitteiden kanssa – voi muuttua tietoturvariskiksi. Tuore Georgia Techin tutkimus esittelee uuden analyysityökalun, DVa:n, joka paljastaa, kuinka haittaohjelmat hyödyntävät tätä avustinta päästäkseen käsiksi käyttäjän tietoihin ja sovelluksiin.

Ruotsalaisinnovaatio mahdollistaa kiinteät litiumakut

Ruotsissa on otettu merkittävä askel kohti turvallisempia ja kestävämpiä akkuja. Luleån teknillisen yliopiston tutkijat ovat kehittäneet uudenlaisen materiaalin, joka voi mahdollistaa kiinteiden litiumakkujen eli ns. solid-state-akkujen laajemman käytön esimerkiksi sähköautoissa ja energian varastoinnissa.

Suomalaiset startupit keräsivät 1,4 miljardia euroa

Suomen startup-yritykset keräsivät vuonna 2024 yhteensä 1,4 miljardia euroa sijoituksia, mikä on 56 prosenttia enemmän kuin edellisvuonna, selviää Pääomasijoittajat ry:n tuoreista tilastoista. Kasvua vauhdittivat erityisesti loppuvuoden muutamat suuremmat rahoituskierrokset.

Murtamaton kvanttisalaus ja 33 terabitin linkki samaan kuituun

KDDI Research ja Toshiba Digital Solutions ovat tehneet merkittävän edistysaskeleen kvanttitietoturvan ja korkean kapasiteetin tiedonsiirron yhdistämisessä. Yritykset onnistuivat siirtämään 33,4 terabittiä dataa sekunnissa ja kvanttisalausavaimia yhtä aikaa yhdessä optisessa kuituyhteydessä.

GPS:lle korvaaja: Bosch haluaa kaupallistaa kvanttianturit

Bosch syventää panostustaan kvanttiteknologiaan ja tähtää nyt kvanttianturien kaupalliseen läpimurtoon. Yhtiö perustaa yhdessä synteettisiä timantteja valmistavan Element Sixin kanssa yhteisyrityksen, jonka tavoitteena on tuoda kvanttianturit teolliseen tuotantoon ja käytännön sovelluksiin.

Tuxera tähtää 100 miljoonan euron liikevaihtoon

Suuri yleisö ei tunne suomalaista Tuxeraa, jonka asiakaskunta on varsin nimekäs: joukossa ovat esimerkiksi ABB, LG, NASA, Rockwell, Siemens ja Weka. Uuden toimitusjohta Stefan Schumacherin johdolla viime vuonna 24 miljoonan euron liikevaihdon tehnyt yritys pyrkii kasvamaan sadan miljoonan euron taloksi viiden vuoden kuluessa.

Generatiiviseen tekoälyyn investoidaan 644 miljardia dollaria tänä vuonna

Gartnerin tuoreen ennusteen mukaan maailmanlaajuiset generatiivisen tekoälyn (GenAI) investoinnit nousevat 644 miljardiin Yhdysvaltain dollariin vuonna 2025. Tämä merkitsee 76,4 prosentin kasvua vuoteen 2024 verrattuna.

Galvaaninen erotus on yhä tärkeämmässä roolissa

Teollisuus- ja ajoneuvosovelluksissa siirtyminen kohti kestävämpiä energiaratkaisuja ja tehokkaampia moottoreita tuo mukanaan uudenlaisia vaatimuksia elektroniikkasuunnittelulle. Järjestelmät yhdistävät yhä useammin laajan kaistaeron komponentteihin perustuvat suurjännitealijärjestelmät ja herkät pienjännitepiirit, kuten mikro-ohjaimet. Näiden yhdistäminen samassa kokonaisuudessa lisää sekä suorituskykyä että riskejä – galvaaninen erotus ja häiriösuojaus ovatkin nyt tärkeämpiä kuin koskaan, sanoo Toshiba Electronics Europe.

Lue lisää...

Joskus yksittäinen komponentti voi olla vaarallinen takaovi

Yritykset investoivat valtavasti kyberturvallisuuteen suojatakseen verkkojaan ja sovelluksiaan. Silti, kaikista suojaustoimista huolimatta, verkkorikolliset onnistuvat vuosi vuodelta entistä paremmin. Miten tämä on mahdollista, kysyy Lenovon tietoturva-asiantuntija Steven Antoniou?

Lue lisää...

 

Tule tapaamaan meitä tulevissa tapahtumissamme.
R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.
 
 R&S -seminaari: 5G Advanced & Beyond
Oulussa 13.5.2025
Espoossa 14.5.2025
 
R&S -seminaari: Calibration
Tampereella 22.5.2025

Seminaareihin ilmoittautuminen ja tiedustelut:
asiakaspalvelu@rohde&schwarz
 

 

LATEST NEWS

NEW PRODUCTS

 
 
article