ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2026  # megabox i st f wallpaper

IN FOCUS

IoT-piireillä päästöt kuriin

IoT-teknologia on nousemassa keskeiseksi työkaluksi kestävän kehityksen ratkaisuissa. Vaikka laitteiden valmistus ja käyttöönotto vaativat energiaa, pitkän aikavälin säästöt ylittävät kulut moninkertaisesti. Tuoreiden analyysien mukaan IoT voi säästää jopa kahdeksankertaisesti sen energiamäärän, jonka se itse kuluttaa elinkaarensa aikana.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

bonus # recom webb
TMSNet  advertisement
ETNdigi
2026  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

Miten valita sopiva säädin aurinkokennoille?

Tietoja
Julkaistu: 02.04.2024
Luotu: 02.04.2024
Viimeksi päivitetty: 23.04.2025
  • Advertorial

Kenellekään ei kai tarvitse enää vakuuttaa, että oikein valmistetut aurinkokennojärjestelmät voivat olla suureksi hyödyksi sekä kuluttajille että itse energiajärjestelmälle. Jopa pienen aurinkopuiston omistajasta tulee automaattisesti sähköenergian tuottaja, mikä alentaa huomattavasti sähkölaskuja. Järjestelmän optimaalinen tehokkuus edellyttää kuitenkin oikean säätimen valintaa.

Yhdessä energiavaraston kanssa aurinkokenno järjestelmä mahdollistaa joissakin olosuhteissa sähköverkosta eristäytymisen sekä sellaisen energiamäärän takaamisen, joka on riittävä omiin tarpeisiin. Sähköverkon näkökulmasta aurinkopaneeleista syntyvä sähkö on ilmaista (tuottajakuluttaja maksaa koko järjestelmästä) ja voimakkaan auringonsäteilyn hetkinä valtavat energiamäärät mahdollistavat suurten perinteisten voimaloiden joustavamman käyttämisen sekä kasvihuonekaasujen päästön rajoittamisen.

Jotta aurinkokennojärjestelmä toimii täysin tehokkaasti, on täytettävä useita ehtoja. Ensinnäkin paneelit on sijoitettava paikkaan, joka ei ole varjoisa. Kaikki järjestelmän lähistössä olevat kohteet, rakennukset tai korkeat puut saattavat heittää varjon, joka vaikuttaa aurinkokennojen tuottaman tehon alentamiseen. Paneelien pitäisi olla tietenkin suunnattu etelään, josta tulee eniten auringonsäteitä koko päivän aikana. Tärkeä on myös järjestelmän kallistuskulma Auringon suhteen. Sopivan asettamisen ansiosta järjestelmä suorittaa tehtävänsä mahdollisimman tehokkaasti.

Erittäin suosituiksi ovat myös tulleet pienet aurinkokennojärjestelmät, jotka akkuun kytkettyinä voivat toimia laturina, esimerkiksi leirintämatkoilla. Kyseessä ovat siis off-grid-järjestelmät, jotka eivät ole kytketty sähköverkkoon. Samoin kuin niiden isompien vastikkeiden tapauksessa, sopivan asennuksen ansiosta maksimaalinen määrä auringonsäteitä pääsee paneeliin, joten vain käyttäjästä riippuu, hyödyntääkö hän järjestelmänsä tehoa täysin. Onko siinä kuitenkin kaikki, mitä voimme tehdä, että generaattorimme hyödyntää luonnon koko potentiaalin?

Ilmeisesti ei. Onneksi avuksi tulevat aurinkosäätimien valmistajat. Järjestelmän toiminnan aikana juuri ne pitävät huolen siitä, että aurinkokennot toimivat meille täydellä tehollaan.

AURINKOSÄÄDIN - MIKÄ SE ON?

Sen selvittämiseksi, mikä aurinkosäädin on, aluksi täytyy ymmärtää, miten sähköenergiaa aurinkokennojärjestelmässä oikeastaan tuotetaan. Kyseisten paneelien tehoa kuvaa seuraava riippuvuus:

P=U\bullet Imula":{"formula":"P=U\bullet I","inline":true,"translations":["P=U\bullet I"],"variables":["P=U\bullet I"]}} }}

jossa:

P – järjestelmän teho PV [W],
U – sähköjännite [V],
I – sähkövirta [A].

Yllä olevan kaavan mukaan paneelien teho on jännitteen ja sähkövirran tulo. On selvä, että kyseiset arvot vaihtelevat vuorokauden aikana. Jos ei yritetä silloin vaikuttaa millään tavalla tuotannon normalisointiin ja keskiarvoistamiseen, se aiheuttaa aurinkovoimalan erittäin epävakaan toiminnan. Myös kokonaistuotanto ei ole siinä tapauksessa tyydyttävä. Mitä voi siis tehdä sähkövirran ja jännitteen arvojen säilyttämiseksi optimaalisella tasolla? Juuri siihen tarkoitukseen käytetään laitetta nimeltään aurinkosäädin.

Alla olevan kaavion mukaan aurinkopaneeli saavuttaa maksimaalisen tehonsa silloin, kun määritetään sellainen jännitteen ja sähkövirran piste, että sähkövirran käyrän alla määritetään suorakulmio, jolla on mahdollisimman iso pinta-ala. Säätimen tehtävä on siis hyödyntää aurinkoenergiaa tehokkaasti ja lyhentää pariston täydentämisaikaa täydentämällä jatkuvasti kulutettua sähköä. Kehittyneemmän mallin tapauksessa sen tehtävä on lisäksi jäljittää ja seurata maksimaalisia tehopisteitä, minkä ansiosta järjestelmä toimii täydellä tehollaan. Kyseisen laitteen asennus mahdollistaa sähkön tehokasta tuotantoa pilvisempinäkin päivinä. Yhden sellaisen laitteen asentaminen voi rajoittaa tarvetta laajentaa järjestelmää seuraavilla aurinkopaneeleilla.



PWM VAI MPPT?

On kaksi tyyppiä aurinkosäätimiä. Kyseessä ovat siis PWM (Pulse Width Modulator)- ja MPPT (Maximum Power Point Traffic)-säätimet. Ne eroavat toisistaan toimintaperiaatteella, hinnalla, tehokkuudella sekä (ja ehkä etenkin) kyvyllä toimia eri sääolosuhteissa. Määrittääkseen selvästi, onko valitun järjestelmän tapauksessa taloudellisesti perusteltua asentaa kalliimpi malli, on tutustuttava molempien hyviin ja huonoihin puoliin sekä ainakin perustasolla tutustua molempien laitteiden toimintaperiaatteeseen.

PWM-säätimet

PWM-säädin toimii pulssin leveyden säädön periaatteella. Yksinkertaisimmin sanottuna PWM-säädin lähettää akkuun lyhyitä jännitteen annoksia, eikä anna sen ylilatautua tai purkautua. Samalla ei ole akun ylikuumenemisen tai kaasumuodostuksen riskiä. Vakaan lataustason ylläpito pidentää pariston elinikää. Mitä korkeampi on akun lataustaso, sitä enemmän säädin vähentää energia-annosten määrää, ylläpitäen energian vakaata ja määritettyä arvoa.

Mitkä ovat kyseisen ratkaisun tärkeimmät edut?

  • Alhainen hinta verrattuna MPPT-säätimeen
  • Akun suojaus ylikuumenemiselta ja kaasunmuodostukselta
  • Akun eliniän pidentäminen
  • Laaja valikoima saatavilla olevia malleja
  • Toimittaa maksimaalisen saatavilla olevan määrän tehoa mahdollisimman lyhyenä aikana

Mitkä ovat PWM-säätimien huonot puolet?

  • Jotta laite toimii oikein, tulojännitteen täytyy tasapainottaa akun jännitettä;
  • Se toimii parhaiten täydessä auringonvalossa, eikä ole sopiva varjoisille järjestelmille
  • Se aiheuttaa häiriöitä, varsinkin sähköviran korkeampien arvojen tapauksessa
MPPT-säätimet – edut ja toimintaperiaate

MPPT-aurikosäätimet ovat laitteita, joilla on aikaisemmin mainittu kyky seurata parhaita tehopisteitä. Kyseisen järjestelmän toimintaperiaatteena on akun jännitteen sellainen säätö, että sen avulla voi saavuttaa maksimaalisen latausvirran. Toisin kuin PWM:t, MPPT:t hyödyntävät siis järjestelmän maksimaalisia suorituskykyjä ja käyttävät siihen parhaillaan vallitsevia aurinko-olosuhteita. Kyseisen ratkaisun valtava etu on kyky tuottaa sähköenergiaa sekä suotuisimmissa olosuhteissa, jolloin on täysi auringonvalo, että auringonnousun ja -laskun ja lisäksi pilvisen sään aikana. Säteily pääsee perille nimittäin aina, mutta tehokkaasti toimia voi ainoastaan se järjestelmä, joka pystyy mukautumaan auringonvalon tasoon. Käy ilmi, että hyvälaatuista MPPT-säädintä käytettäessä tuotantotehokkuus voi olla jopa 30% korkeampaa vähäisen auringonvalon olosuhteissa. Lisäksi laite vaikuttaa akun lataamisen aikana esiintyvien häviöiden alentamiseen.

Useita epäilemättömiä etuja seuraa valitettavasti huomattavasti korkeampi hinta. Se ei kuitenkaan ole kannattamaton sijoitus – järjestelmän sopiva tuki antaa nimittäin selviä hyötyjä, joista tärkein on sähköenergia ympäri vuorokauden, riippumatta siitä, onko yllämme pilvetön taivas, vai onko Aurinko piilossa korkealla pilvien yllä.

Jotta järjestelmä toimisi tehokkaimmin, MPPT-säätimellä varustetussa järjestelmässä sijaitsevat aurinkopaneelit pitää kytkeä sarjaan. Sellaisen järjestelmän toiminta on paljon tehokkaampaa, kuin useampien paneelien rinnankytkentä PWM-säätimen tapauksessa. Täytyy samalla ottaa huomioon, ettei saa ylittää aurinkopaneelien valmistajan määrittämää maksimijännitettä. Kyseinen tilanne on nimittäin vaaraksi laitteelle, joka pahimmassa tapauksessa saattaa vahingoittua.

MAKSIMAALISEN TEHOPISTEEN JÄLIJITYSMENETELMÄT

Maksimaalisen tehopisteen seuranta voi perustua muutamaan algoritmiin, jotka tarjoavat säätimen toiminnan eri tarkkuutta. Yleensä käytetään seuraavia menetelmiä:

  • Perturbaatio- ja havaintomenetelmä – sitä voi kutsua yritykseksi ja erehdykseksi. Se perustuu nimittäin jännitepisteen sijainnin minimaaliseen korjaukseen ja havaintoon, onko kyseinen toiminta aiheuttanut lataustehon nousun vai laskun. Sen jälkeen otetaan seuraava, samanlainen askel, kunnes saavutetaan tyydyttävä tulos. Täytyy huomata, että asennuspisteen siirtotaso on sama jokaisen seuraavan intervention tapauksessa.

  • Inkrementaalisen johtavuuden menetelmä – kyseessä on algoritmi, joka pystyy ennakoimaan tehokäyräkaavion perusteella, miten suuri muutos on tehtävä mahdollisimman suurten hyötyjen saavuttamiseksi. Algoritmi suorittaa sen analysoimalla sähkövirran ja jännitteen kasvua, mikä mahdollistaa suoritetun muutoksen tuloksen määrittämisen.

  • Lämpötilamenetelmä – maksimaalisen toimintapisteen määrittämiseen käytetään lämpötilan mittausta. Vertaamalla tulosta viitelämpötilaan pystymme määrittämään optimaalisen asetuksen. Ongelma esiintyy kuitenkin silloin, kun ilmestyy varjo. Lämpötilamenetelmä on tällöin virheellinen.

PV-JÄRJESTELMÄLLE SOPIVAN SÄÄTIMEN VALINTA

Voidakseen valita säätimen, joka olisi sopiva olemassa olevalle aurinkokennojärjestelmälle, täytyy tietää sekä itse paneelien perusparametrit että käytetyn akun tekniset tiedot ja tehonkulutuksen arvo. Tärkeimpiä tekijöitä, jotka kertovat aurinkokennojen ja PWM- sekä MPPT-säätimien keskinäisen yhteensopivuuden oikeellisuudesta, ovat:

  1. Aurinkopaneelien nimellisteho – kyseinen parametri on otettava huomioon, jotta järjestelmä yhdessä säätimen kanssa pystyisi jokaisessa tapauksessa lataamaan akun energiavarastolle sopivana ja turvallisena aikana
  2. PV-paneelien jännite, joka ei ylitä akun sallittua latausjännitettä sekä säätimen valmistajan määrittämää maksimaalista jännitettä
  3. Kulutettava huipputeho – sopivasti valitun säätimen ominaisuuksiin täytyy kuulua sama tai korkeampi latausvirta, joka kompensoi kaikkien kytkettyjen vastaanottimien virrankulutusta
  4. Aurinkopaneelien oikosulkuvirta – valitun laitteen ominaisuuksiin pitäisi kuulua korkeampi latausvirta, kuin PV-järjestelmän mainittu oikosulkuvirta
  5. Energiavaraston kapasitanssi – valitakseen sopivan laitteen, jonka avulla on mahdollista täydentää kulutettua energiaa lyhyenä aikana, täytyy määrittää ensin, miten paljon sitä pystytään käyttämään, eli miten tilavaa akkua tarvitaan. Silloin järjestelmä tulee olemaan räätälöity asiakkaan tarpeisiin.

Sopivan aurinkosäätimen valinta pystyy parantamaan järjestelmämme tehokkuutta, mikä vaikuttaa taloudelliseen laskuun. Sekä PWM- että MPPT-säätimillä on huonot ja hyvät puolensa ja vain hyvin harkitun ostoksen ansiosta laite voi täyttää käyttäjän odotukset.

Transfer Multisort Elektronik Sp. z o.o.:n alkuperäinen teksti löytyy täältä.

MORE NEWS

DigiKeyn uusien tuotteiden listaajilla oli kiireinen vuosi

DigiKey kasvatti tuotevalikoimaansa voimakkaasti vuonna 2025. Jakelijan varastoon lisättiin yli 108 000 uutta varastoitavaa komponenttia, jotka ovat saatavilla saman päivän toimituksella. Kaikkiaan DigiKey lisäsi järjestelmiinsä yli 1,6 miljoonaa uutta tuotetta vuoden aikana. Samalla jakelijan toimittajaverkosto kasvoi 364 uudella valmistajalla. Mukana ovat yhtiön perusliiketoiminta, Marketplace sekä Fulfilled by DigiKey -ohjelma.

Protoat Arduinolla? DigiKeyn webinaari voi auttaa

DigiKey ja Arduino järjestävät 12. helmikuuta webinaarin, jossa pureudutaan nopeaan prototypointiin Arduinon uusilla työkaluilla. From board to build: Using UNO Q and App Lab -tilaisuus järjestetään Suomen aikaa klo 17.

Tässä Intel on edelleen hyvä: 86 ydintä ja 128 PCIe5-linjaa

PC-prosessoreissa Intel ei ole enää yksinvaltias. AMD on haastanut yhtiötä viime vuosina erittäin kovaa, ja tekoälyn kouluttamisessa GPU-korteilla Nvidia on noussut ylivoimaiseen asemaan. Työasemapuolella asetelma on kuitenkin toisenlainen. Uusi Xeon-sukupolvi muistuttaa, että raskaat ammattilaisjärjestelmät ovat yhä Intelin vahvinta aluetta.

Ethernet korvaa hitaat kenttäväylät autoissa

Autoteollisuudessa tapahtuu hiljainen mutta perustavanlaatuinen muutos. Ethernet etenee nyt myös auton alimmalle verkottamisen tasolle. Tavoitteena on korvata perinteiset, hitaat kenttäväylät kuten CAN ja LIN. Tuore esimerkki kehityksestä on Microchip Technologyn ja Hyundain yhteistyö. Yhtiöt tutkivat 10BASE-T1S Single Pair Ethernetin käyttöä tulevissa ajoneuvoalustoissa.

Tekoälyagenttien käyttöoikeudet voivat olla riski

Työpaikoilla yleistyvä tekoälyagenttien käyttö voi tuoda merkittäviä tietoturvariskejä, varoittaa kyberturvayritys Check Point Software. Viime viikkojen OpenClaw-keskustelu on tuonut esiin, miten itsenäisesti toimivat tekoälyagentit voivat koskettaa organisaation järjestelmiä samalla tavalla kuin oikeat työntekijät, ilman asianmukaisia hallinta- ja valvontamekanismeja.

Tekoäly auttaa suunnittelemaan antennin

Taoglas on julkaissut tekoälyyn perustuvan antennien suosittelutyökalun. Yhtiön mukaan kyseessä on maailman ensimmäinen AI-vetoinen ratkaisu, joka ohjaa antennin ja RF-komponenttien valintaa automaattisesti.

Tesla ei ole enää Euroopan ykkönen

Sähköautot piristivät Euroopan autokauppaa vuonna 2025. Kokonaiskasvu jäi silti vaatimattomaksi. Suurin muutos nähtiin merkkien välisessä järjestyksessä. Volkswagen nousi Euroopan myydyimmäksi täyssähköautobrändiksi ohi Teslan.

Mikroledinäytön suurin ongelma ratkaistu

Microledeihin pohjautuvat näytöt etenevät kohti VR- ja AR-laseja vääjäämättä. Tuore tutkimus Korean tieteen ja teknologian tutkimusinstituutista (KAIST) osoittaa, miksi OLED jää lopulta väistämättä kakkoseksi.

Kiintolevyn nopeus lähestyy flashia

Kiintolevy ei ole katoamassa AI-aikakaudella. Päinvastoin. WD eli entinen Western Digital esitteli Innovation Day -tapahtumassaan roadmapin, jossa HDD:n suorituskyky kasvaa tasolle, joka aiemmin kuului vain flash-muisteille.

SiTime ostaa Renesasin ajoituspiirit 1,5 miljardilla dollarilla

SiTime ostaa Renesas Electronicsin ajoituspiiriliiketoiminnan noin 1,5 miljardin dollarin kaupassa. Kauppa tehdään käteisellä ja SiTimen osakkeilla, ja sen odotetaan toteutuvan vuoden 2026 loppuun mennessä viranomaishyväksyntöjen jälkeen.

Tämä on uusi normaali: tietoturva-aukot pitää paikata tunneissa

Microsoft Officesta löytynyt tuore haavoittuvuus osoittaa, kuinka nopeasti nykypäivän tietoturva-aukot päätyvät hyökkääjien käyttöön. Kyse ei ole enää yksittäisten tutkijoiden manuaalisesta työstä, vaan pitkälle automatisoidusta prosessista.

Tamperelainen Vexlum ratkaisee ison ongelman kvanttitietokoneissa

Kvanttitietokoneiden kehitystä kuvataan usein kubittien lukumäärällä, mutta Vexlumin toimitusjohtajan ja perustajaosakkaan Jussi-Pekka Penttinen mukaan tämä mittari ei kerro koko totuutta. Penttisen mukaan hyödyllinen skaalautuvuus määräytyy ennen kaikkea kubittien laadusta, ei pelkästä määrästä. - Hyödyllisessä skaalautuvuudessa kyse ei ole vain kubittien lukumäärästä vaan erityisesti myös kubittien laadusta eli koherenssiajasta ja kubittien välisestä vuorovaikutuksesta.

Vexlum keräsi 10 miljoonaa euroa puolijohdelaserien tuotannon skaalaamiseen

Suomalainen Vexlum on kerännyt 10 miljoonan euron rahoituksen puolijohdelasereiden valmistuksen kasvattamiseen. Kyseessä on tiettävästi suurin pohjoismaisen fotoniikkayrityksen keräämä seed-vaiheen rahoituskierros.

Insta on pitkään tehnyt oikeita valintoja

Insta Group on kasvanut lähes 200 miljoonan euron teknologiakonserniksi 15 peräkkäisen kasvuvuoden aikana. Nyt yhtiö vie seuraavan askeleen ja vahvistaa johtamismalliaan. Konsernille nimitetään oma toimitusjohtaja, ja molemmat suuret liiketoiminta-alueet saavat omat vetäjänsä. Kyse ei ole yhtiön pilkkomisesta, vaan kasvun pakottamasta rakenteellisesta muutoksesta.

TI ostaa Silicon Labsin miljardikaupassa

Texas Instruments ostaa Silicon Labsin noin 7,5 miljardin dollarin käteiskaupalla. Kauppahinta on 231 dollaria Silicon Labsin osakkeelta. Kauppa edellyttää viranomaisten ja Silicon Labsin osakkeenomistajien hyväksyntää. Järjestelyn odotetaan toteutuvan vuoden 2027 alkupuoliskolla.

Mikä on hybridihätäpuhelu?

Hybridihätäpuhelu eli Hybrid eCall on ajoneuvojen hätäpuhelujärjestelmä, joka käyttää sekä 4G LTE -verkkoa että perinteisiä 2G ja 3G -verkkoja. Tavoite on yksinkertainen. Hätäpuhelu ja siihen liittyvä data saadaan varmasti perille kaikissa olosuhteissa.

FPGA vastaa kvanttiuhkaan ennen kuin se on todellinen

AMD:n uusi Kintex UltraScale+ Gen 2 -FPGA-sukupolvi ei yritä voittaa suorituskykykilpailua pelkillä logiikkasoluilla. Se vastaa ongelmaan, joka on jo näkyvissä mutta vielä harvoin ratkaistu. Miten laitteet suojataan kvanttiajan uhkilta ennen kuin uhka realisoituu?

AI-palvelimen teho-ongelmaan ratkaisu

Tekoälypalvelimissa laskentateho kasvaa nopeammin kuin virransyöttö pysyy perässä. Pullonkaula ei ole enää prosessori vaan teho, tila ja lämpö. Tätä taustaa vasten Microchip Technology toi markkinoille uuden MCPF1525-tehomoduulin.

Ams OSRAM myy analogiset anturinsa Infineonille

Ams OSRAM myy ei-optisen analogi- ja mixed-signal-anturiliiketoimintansa Infineon Technologiesille 570 miljoonan euron käteiskaupalla. Kaupan odotetaan toteutuvan vuoden 2026 toisella neljänneksellä viranomaislupien jälkeen.

Rohde & Schwarz toi 44 gigahertsin analyysin keskiluokkaan

Saksalainen Rohde & Schwarz laajentaa keskiluokan mittalaitetarjontaansa uudella FPL1044 -spektrianalysaattorilla. Laite ulottuu 44 gigahertsiin asti, ja on samalla ensimmäinen tämän hintaluokan analysaattori, joka yltää Ka-alueelle.

bonus # recom webb mobox
2026  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Älyä virtaamien mittaukseen

Virtaamamittaus on monissa laitteissa kriittinen mutta usein ongelmallinen toiminto. Perinteiset mekaaniset anturit kuluvat ja jäävät sokeiksi pienille virtausnopeuksille. Ultraäänitekniikkaan perustuvat valmiit moduulit tarjoavat nyt tarkan, huoltovapaan ja helposti integroitavan vaihtoehdon niin kuluttaja- kuin teollisuussovelluksiin.

Lue lisää...

OPINION

Reunatekoäly pakottaa muutoksiin kentällä

Vuosi 2026 muodostuu liikkuville kenttätiimeille käännekohdaksi. Kentällä käytettävä teknologia ei ole enää tukiroolissa, vaan keskeinen osa päätöksentekoa, tehokkuutta ja turvallisuutta. Reunatekoäly, luotettavat yhteydet ja laitetason tietoturva ovat siirtyneet nopeasti vapaaehtoisista valinnoista välttämättömyyksiksi, kirjoittaa Panasonic TOUGHBOOKin Euroopan johtaja Steven Vindevogel.

Lue lisää...

LATEST NEWS

  • DigiKeyn uusien tuotteiden listaajilla oli kiireinen vuosi
  • Protoat Arduinolla? DigiKeyn webinaari voi auttaa
  • Tässä Intel on edelleen hyvä: 86 ydintä ja 128 PCIe5-linjaa
  • Ethernet korvaa hitaat kenttäväylät autoissa
  • Tekoälyagenttien käyttöoikeudet voivat olla riski

NEW PRODUCTS

  • Eikö 8 bittiä enää riitä? Tässä vastaus
  • Maailman pienin 120 watin teholähde DIN-kiskoon
  • Terävä vaste pienessä kotelossa
  • Click-kortilla voidaan ohjata 15 ampeerin teollisuusmoottoreita
  • Pian kännykkäsi erottaa avaimen 11 metrin päästä
 
 

Section Tapet