Digitaalinen terveys on käymässä läpi vallankumousta, joka perustuu ultra kannettavien, kannettavien valvontalaitteiden saatavuuteen. Nämä laitteet antavat potilaille, joilla on pitkäaikaisia ja kroonisia sairauksia, mahdollisuuden päivittäiseen sairauden seurantaan, jolloin korkeatasoinen hoito voidaan tarjota mukavammin kuin koskaan ennen. Näiden laitteiden tehonhallinta on suunnittelijoille iso haaste.
Artikkelin on kirjoittanut Mouser Electronicsin Mark Patrick. Hän tuli Mouserin palvelukseen kesällä 2014 työskenneltyään aiemmin RS Componentsilla markkinointitehtävissä ja sitä ennen Texas Instrumentsissa sovelluskehityksen tuessa. Hänellä on elektroniikkainsinöörin tutkinto Coventryn yliopistosta. |
Jokaisessa uudessa laitesukupolvessa on oltava enemmän ominaisuuksia ja toimintoja kuin edellisessä sukupolvessa. Tämä tuottaa haasteita suunnittelijoille, koska uudet toiminnallisuudet vaativat usein enemmän virtaa.
Akun koon lisääminen ei ole vaihtoehto. Se kasvattaa laitteen kokoa ja painoa, mikä on hankalaa kaikille käyttäjille ja merkittävä kuormitus ikääntyville potilaille tai pikkulapsille, jotka saattavat käyttää laitetta. Ei voida myöskään hyväksyä latausvälien lyhentämistä, joten ainoa jäljellä oleva vaihtoehto on löytää älykkäämpiä tapoja hallita laitteessa käytettyä virtaa.
Puettavat: kokonainen järjestelmäsuunnittelu
Vaikka ovatkin fyysisesti pieniä, puettavat lääketieteelliset laitteet ovat täysin toimivia järjestelmiä, jotka sisältävät useita olennaisia osia. Tyypillinen laite käsittää seuraavat komponentit:
- Mikro-ohjainyksikkö (MCU) koodin / laiteohjelmiston suorittamiseen sekä datan hallintaan ja käsittelyyn.
- Ladattava akku, joka antaa energiaa laitteen toiminnan mahdollistamiseksi.
- Anturit, joiden avulla voidaan kerätä tietoja tarkkailtavista fyysisistä parametreista - tämä voi olla pulssimittari tai glukoosimonitori sekä yleiset anturit, kuten kiihtyvyysanturi tai gyroskooppi.
- Langaton viestintärajapinta - tämä on normaalisti yleinen, vähän energiaa kuluttava protokolla, kuten BLE (Bluetooth Low Energy) tai NFC (Near Field Communication).
- Turvallisuusmääräykset - tämä on yhdistelmä laitteistoa ja ohjelmistoa, ja se salaa kaikki lähetykset samoin kuin estää haittaohjelmien aiheuttamat häiriöt.
Kaikilla lääketieteellisillä valvontalaitteilla on tietty tarkoitus, vaikka kyse olisi yleiskäyttöisestä elintoimintoja tarkkailevasta fitness-rannekkeesta. Tämä käyttötarkoitus määrittelee mikro-ohjaimen ja anturien valinnan, sekä erityisesti niiden parametrit, kuten tarkkuuden, luotettavuuden ja mittauksen toistettavuuden. Yhden akun latauksen mahdollistava mittauksen pituus vaikuttaa myös komponenttien valintaan, sillä joissakin tapauksissa tarvitaan erittäin vähän virrankulutusta käyttäviä laitteita.
MCU on järjestelmän sydän, joka yhdistää ja integroi kaikki oheisosat, mukaan lukien anturit ja muut laitteet. Monissa tapauksissa arkkitehtuuri järjestää oheislaitteet alueiksi tai ryhmiksi, jotka voidaan kytkeä pois päältä, kun niitä ei tarvita. Esimerkiksi RF-osa vaaditaan vain tiedonsiirron yhteydessä, tai tietty anturi voi ottaa vain yhden lukeman minuutissa, jolloin se pitää sammuttaa väkiajoiksi.
Akku
Akkutekniikka on edennyt huomattavasti viime vuosina, kun nykyisiä kemioita on parannettu ja uusia on julkaistu. Yleisin tyyppi, jota käytetään puettavissa laitteissa, on litiumioni (Li-Ion), joka tuottaa jännitteitä välillä 3,2–4 V yhdestä kennosta. Vaikka litium-ionipolymeeriparistoja (LiPo) käytetään joissakin puettavissa laitteissa, litiumioni on edullinen johtuen suuremmasta kapasiteetista ja siitä, että ne ovat suhteellisen ympäristöystävällisiä.
Fysiikan lait pätevät kuitenkin edelleen, ja Li-Ion-akun varastointikapasiteetti riippuu vahvasti sen fyysisestä koosta. Tämä tarkoittaa, että kaikkein rajoitetuimmissa suunnitteluissa kuten puettavissa laitteissa on käytettävissä suhteellisen vähän energiaa laitteen pitkäaikaiseen virransyöttöön. Uusien materiaalien ja tekniikoiden tutkimusta jatketaan tilanteen parantamiseksi, ja useat tutkimukset osoittavat, että grafeeni on todennäköinen tapa parantaa huomattavasti akun kapasiteettia tilavuusyksikköä kohti. Toinen tutkimusväylä liittyy superkondensaattoreihin, jotka hyötyvät nanoteknologian yleisestä edistyksestä.
Erittäin vähävirtaiset mikro-ohjaimet
Suunnitellakseen nykyaikaisen puettavan laitteen suunnittelijat valitsevat mahdollisimman vähävirtaisen mikro-ohjaimen. Tällä hetkellä edistyksellisimpänä pidetään ohjaimia, jotka kuluttavat vähemmän kuin 1 milliampeeri aktiivisena ja vain muutama nanoampeerin lepotilassa. Oman kulutuksen lisäksi ohjain on avainasemassa järjestelmän kokonaisvirrankulutuksessa, koska se ohjaa oheislaitteiden energiansaantia varmistaen, että akun arvokasta kapasiteetista hukata.
Maxim Integratedin MAX32660-ohjain tasapainottaa suorituskyvyn ja tehokkuuden, joten se on ihanteellinen valinta kannettavien laitteiden suunnitteluun. 32-bittisen ARM Cortex-M4 -ytimen ympärille rakennettu piiri sisältää liukulukulaskentayksikön (FPU) ja antureiden ja muiden laitteiden oheishallinnan. MAX32660 pystyy ohjaamaan ulkoisia muistilaitteita, mikä mahdollistaa edistyneiden käsittelyalgoritmien kehittämisen ja ajamisen. Tehokkuuden suhteen laite on alan johtava piiri, sillä se tarvitsee vain 50 mikrowattia virtaa jokaista megahertsiä varten. Fyysisesti piirin mitat ovat vain 1,6 x 1,6 millimetriä (WLP-kotelo), jolloin se mahtuu helposti vähän tilaa sisältävän puettavan laitteen sisään.
Kuva 1. MAX32660-lohkokaavio (kuva: Maxim Integrated).
Toinen toimittaja, joka tarjoaa erilaisia erittäin pienitehoisia 32-bittisiä ohjainpiirejä lääketieteellisiin puettaviin laitteisiin on Microchip. Heidän SAM-sarjansa käsittävät pienet SAM D -ohjaimet, jotka perustuvat ARM Cortex-M0 + -teknologiaan, samoin kuin korkean suorituskyvyn PIC32MX XLP -pohjaiset ohjaimet ja erittäin pienitehoiset piirit SAM L -sarjassa. Kuluttaen vain 200 nanoampeeria lepotilassa nämä energiatehokkaat laitteet vaativat alle 35 mikroampeeria megahertsiä kohti aktiivisessa tilassa. Pienestä koosta ja energiatehokkuudsta huolimatta niiden ominaisuuksissa ei ole tingitty: piirit sisältävät LCD-portit, operaatiovahvistimet, reaaliaikakellot ja mTouch-kosketustuen sekä USB- ja DMA-liitännät.
Arm Cortex-M3-pohjainen Silicon Labsin EFM32 Giant Gecko -sarja on toinen ehdokas lääketieteen puettaviin laitteisiin. Nämä piirit sisältävät itsenäisiä vähän energiaa käyttäviä oheislaitteita, kuten AES-salaus turvallisuuden lisäämiseksi, UART tietoliiikenteeseen, rajoitettu tehoanturiliitäntä ja integroidut operaatiovahvistimet.
Figure 2: EFM32-lohkokaavio (kuva: Silicon Labs).
Eroon akkuriippuvuudesta
Akkutekniikka voi olla haaste lääketieteellisissä sovelluksissa, koska potilas voi unohtaa ladata akun säännöllisesti, mikä tarkoittaa, että monitorointi jää tekemättä. Joissain tapauksissa hoitajalle voidaan antaa vastuu lataamisesta, mutta siitä tulee lisärasitus potilashoitojärjestelmälle. Näistä syistä lääketieteen ammattilaiset ovat hyväksynyt akkupohjaisia lääketieteellisiä valvontalaitteet nihkeästi, mikä on saanut valmistajat etsimään vaihtoehtoisia tapoja virran tuottamiseksi.
Energian keruu ei ole riippuvainen varastoidusta energiasta akun muodossa, vaan se tuottaa energiaa lähteistä, kuten auringon valosta tai lämmöstä tai potilaan liikkeistä, kun he liikkuvat laitetta käyttäessä. Riittävällä valolla, lämmöllä tai liikkeellä tämä lähestymistapa voi antaa melkein äärettömän energialähteen, jolloin kannettavat voivat toimia rajoittamattoman ajan ilman, että niitä tarvitsee erikseen operoida.
Keskimäärin henkilö kuluttaa 107 Joulea päivässä lämmön ja liikkumisen sekoituksena, mikä tarkoittaa, että saatavilla on helposti riittävästi energiaa pienen puettavan laitteen virtaistamiseksi, kunhan lämmön liike voidaan muuntaa sähkövoimaksi.
Lämmön muuntamiseksi sähköksi perustuu Seebeck-efektiin, joka synnyttää jännitteen kahden pisteen lämpöeron perusteella - puettaessa laitteessa tämä tarkoittaa laitteen potilasta (lämmin) ja ympäristöä (viileämpi) koskettavia pintoja. Tähän muuntamiseen sopiva tekniikka olisi puolijohdepohjainen Peltier-kenno, jonka etuna on se, että se pystyy tuottamaan energiaa ympäri vuorokauden toisin kuin aurinkoenergia, joka toimii huonosti sisätiloissa eikä ollenkaan yöllä.
Potilaan liikkuessa hän tuottaa energiaa ja tämä mekaaninen liike voidaan muuntaa sähköenergiaksi käyttämällä pietsosähköisiä elementtejä, jotka tuottavat pienen virran vasteena jokaiselle liikkeelle, kuten kävelylle tai liikunnalle. Wurth Electronics tarjoaa käyttövalmiin energiankeruuratkaisun (Energy Harvesting Solution to Go) kehitysalustaa, joka antaa kehittäjille helpon tavan päästä alkuun energiankeruun maailmassa.
Korttien jännitteiden reguloiminen
Puettavissa laitteissa on yleensä sisäänrakennettu DC-DC-muunnin, joka varmistaa, että järjestelmän kaikille laitteille syötetään vakioista virtaa, vaikka virranlähde vaihtelee. Tyypillisesti mikro-ohjaimen ohjaamat, edistyneet DC-DC-muuntimet hallitsevat koko ohjaimen energiaa varmistaen, että sitä käytetään mahdollisimman tehokkaasti - mukaan lukien se, että se itse ei kuluta energiaa DC-DC-muuntimessa.
Yksi erittäin pitkälle integroitu DC-DC-muunninratkaisu on nykyisin Analog Devicesin omistaman Linear Technologyn LTC3107. Tämä piiri on suunniteltu erityisesti energiankeräysmekanismeja ajatellen ja on erittäin säästäväinen energian suhteen. Lämpölähteestä ja akusta tapahtuvan energian keräyksen yhdistelmällä laite voi pidentää akun käyttöikää huomattavasti. Tämä vähentää akunvaihtoon liittyviä kustannuksia ja haittoja.
Figure 3: Tyypillinen LTC3107-svoelluspiiri (kuva: Linear Technology).
Puettavat lääkinnälliset laitteet tarjoavat yhä enemmän ominaisuuksia yhä pienenevässä tilassa, mikä vaatii innovatiivisia lähestymistapoja virranhallintaan. Vaikka paristoenergian parempi käyttö on ilmeinen lähestymistapa, energian kerääminen voi tarjota useita etuja. Näitä ovat käyttömukavuus, etenkin kun virransyöttöä hallitaan edistyneellä DC-DC-muuntimella.