USB-C on liitäntä, joka mahdollistaa monimuotoisen datan ja eri tehotasojen syöttämisen yhtaikaa saman liittimen kautta. Kattavat järjestelmäominaisuudet voidaan helposti toteuttaa hyödyntämällä SmartHub-rakennetta, ja perustason lataussovellukset voidaan hoitaa yksinkertaisilla porttiohjaimilla.
Artikkelin kirjoittaja Daniel Leih toimii Microchipillä tuotemarkkinointipäällikkönä. |
Parin viime vuoden aikana on kirjoitettu paljon USB-C-liitännän eduista. Kymmeneen gigabittiin sekunnissa yltävän kaistaleveyden ja Alt Mode -videon lisäksi erityisesti kaksi ominaisuutta tekevät tästä liitäntäratkaisusta uskomattoman arvokkaan: vapaasti käännettävä liitinpistoke ja mahdollisuus suurten tehojen välittämiseen.
Käännettävän pistokkeen arvo on ilmeinen: lopultakin kaikki laitteet voidaan kytkeä kätevästi tarvitsematta välillä käännellä pistoketta ympäri (usein jopa kahdesti!) Älykäs tehonkäsittely on kuitenkin se seikka, joka tekee USB-C-liitännästä niin käyttökelpoisen.
USB-liitännällä on aina ollut kyky tarjota laitteille syöttötehoa, kunhan 5 voltin jännite ja alle 1,5 ampeerin virta riittävät käyttökohteen tarpeisiin. Tämä on rajoittanut liitännän aiemmat A- ja B-versiot vain pienten elektroniikkalaitteiden tehonsyöttöön: USB-muistit, näppäimistöt, ladattavat pienlaitteet, matkapuhelimet. USB-C toi sitten mukanaan uuden PD-standardin (Power Delivery), joka antaa syöttävälle laitteelle mahdollisuuden siirtää liitettyihin laitteisiin jopa 100 watin tehoja 5 – 20 voltin jännitteellä.
Pieni USB-C-pistoke voi näin tarjota tehonsyötön merkittävästi suuremmalle valikoimalle laitteita kuin koskaan aiemmin: ulkoiset muistit, päätelaitteet, PC-laitteet, sähkötyökalut, lääketieteelliset laitteet ja lukuisat muut tavallista enemmän tehoa vaativat kohteet. Sadan watin ulosotosta esimerkiksi sähköauton käyttäjä voi syöttää tehoa miltei mihin tahansa laitteisiin, joita ajopeliin saa mahtumaan (muttei sentään ladata itse autoa – valitettavasti).
PC- ja kännykkäteollisuus on nopeasti omaksunut USB-C-liitännän, ja tuotannossa on jo lukuisia erilaisia käyttäjälaitteita. Erityisesti iPhone on tukenut tämän liittimen käyttöä tehonsyötössä omassa Lightning-liitännässään. Myös monissa Android-puhelinten uusissa malleissa käytetään USB-C:tä.
Alun perin USB-C- ja Power Delivery -toteutukset olivat hyvin monimutkaisia sisältäen paljon ulkoisia komponentteja ja vaatien ohjelmistojen konfigurointivälineitä. Nykyään puolijohdeteollisuudessa on kehitetty uusia piirejä, jotka poistavat kaiken epävarmuuden USB-C-liitännän suunnittelusta. Mitä nykyään sitten vaaditaan, jos suunnittelija haluaa lisätä USB-C-liitännän omaan tuotteeseensa?
Suunnittelun vaatimukset
Minkä tahansa tuotteen suunnittelussa ensimmäinen askel on määritellä, minkälainen joukko erilaisia ominaisuuksia halutaan mukaan. Tämä pätee erityisesti Power Delivery -toiminnolla varustettuihin USB-C-järjestelmiin, sillä PD-ominaisuuksilla on suora vaikutus järjestelmän kokonaiskustannuksiin. PD-toiminto jo itse lisää järjestelmän kustannuksia, joten lopputuotteen tulee merkittävästi hyötyä kasvavasta tehonsyöttökyvystä näiden kustannusten perustelemiseksi.
USB-C on hyvin monipuolinen ja tukee USB:n lisäksi muitakin datatyyppejä, joten asianmukaisten USB-C-komponenttien valinta edellyttää koko järjestelmän ymmärtämistä. Jos tuotteena on muistilaite tai akkulaturi, järjestelmää ei tarvitse rasittaa ylimääräisillä kustannuksilla ja laiteohjelmistoilla, jotka vaaditaan Alt Mode -videon toteuttamiseksi.
Toisaalta, jos tuotteena on näyttölaite, joka kytkeytyy DisplayPort-yhteensopivaan tietokoneeseen, erityiset porttiohjaimet ja lisäkomponentit on otettava mukaan suunnitteluun. Koska USB-C-porttielementit sisältävät datansiirtoon ja tehonsyöttöön tarvittavat PD/USB-protokollat, järjestelmäratkaisu sisältää sekä USB-C PD -porttiohjaimen että analogiaosat ja tehokomponentit.
USB-C-toteutuksista yksinkertaisimpia on pelkkä latausliitäntä. Tässä tapauksessa järjestelmä on suunniteltu vain syöttämään ja/tai lataamaan tehoa siihen kytkettyyn laitteeseen. Esimerkkejä tämän tyyppisestä järjestelmästä ovat auton takapenkin latausliitäntä, sähkötyökalun akkulaturi tai kotikäyttöön tarkoitettu seinälaturi.
Kuva 1. Lohkokaavio USB-C-liitännästä pelkästään lataustehon lähteenä.
Tässä tapauksessa järjestelmän toteuttamiseen vaadittavien komponenttien BOM-lista (Bill of Materials) on suhteellisen lyhyt:
- USB-C-porttiohjain: Ohjaa kytkentää ja jaettavaa tehoa.
- DC/DC-muunnin: Muuttaa tulojännitteen PD:n määrittämäksi Vbus-väyläjännitteeksi.
- Kuormakytkin: Syöttää 5 voltin jännitteen pistokkeen Vbus-väylään ja yhdistää oikean Vbus-jännitteen heti, kun PD on määrittänyt sen. On joskus yhdistetty DC/DC-muuntimeen.
- LDO: reguloi porttiohjaimelle menevän jännitteen, koska DC/DC-muunninta voidaan tarvita 5 – 20 V jännitteen syöttämiseen.
- USB-C-liitin.
Tässä esimerkissä porttiohjaimen valinta edellyttää, että ohjain kykenee hoitamaan kaiken kommunikoinnin kytkettävän laitteen kanssa. Microchipin toimittamien piirien kaltaisiin itsenäisiin ohjaimiin sisältyvät vähintään seuraavat ominaisuudet:
- USB-C-liittimen tuki kytkennän ilmaisun ja ohjauksen kera
- USB Power Delivery 3.0 -yhteensopiva MAC
- Esiohjelmoitu PD-laiteohjelmisto
- Tuki kaikille PD-standardiprofiileille (15/27/45760/100W)
- Valittujen analogiakomponenttien integrointi. Ne vähentävät BOM-kustannuksia ja yksinkertaistavat suunnittelua. Esimerkkejä liitäntään vaadittavista osista:
Rp/Rd-valinnan hoitavat VCONN FET -transistorit
Viallisen akun irtikytkentä (Rd)
Ohjelmoitava virranmittaus ylivirtatilanteissa - Jännitteenmittaus ylijännitetilanteissa
- Kohdesovellukseen sopivan lämpötilan tuki
Koska tässä tapauksessa on kysymyksessä ainoastaan akun lataaminen, muita järjestelmän ohjaimia ei tarvita. Vaikka jotkut piirientoimittajat tarjoavat tähänkin ohjelmoitavia piirejä, looginen valinta ainoastaan akunlatausta varten on esiohjelmoitu piiri, jolla ei ole erityisiä vaatimuksia ohjelmiston suhteen ja jossa järjestelmän kokoonpanon asetukset voidaan tehdä yksinkertaisesti vain kytkennöin maatasoon tai Vcc-jännitteeseen. Niin kauan kuin ohjain on PD 3.0 -yhteensopiva, käyttäjällä on pääsy kaikkiin tehonjakelun standardiprofiileihin: 15W/27W/45W/60W/100W.
DC/DC-muuntimen tyypin valinta riippuu lähinnä tulojännitteestä. Teholähteen on aina kyettävä antamaan lähtöjännitteeksi 5 – 20 VDC, jotta se olisi täysin PD-yhteensopiva. Järjestelmille, joissa tulojännite on 24 VDC, tai yleensäkin yli 20 VDC, alaspäin muuntava buck-topologia voi tarjota kustannustehokkaan ratkaisun. Alemmilla tasajännitteillä toimiville tai offline-tilassa toimiville AC-järjestelmille vaaditaan muita topologioita.
Kuvan 1 esimerkki nähdään modifioituna kuvassa 2. Siinä suunnittelijan valitsema ratkaisu tarjoaa USB2-isäntätuen tiedonsiirtoon, koska tuotteessa on ennestään mikro-ohjain, joka sisältää natiivin USB2-tuen. Kannattaa panna merkille, että porttiohjain ei vaadi yhteyttä USB2-datapolkuun. Lisäkomponentteja ei tarvita, ja USB-C-liitännän BOM-lista on sama kuin pelkässä laturissa. USB3 voidaan myös ottaa käyttöön yksinkertaisesti lisäämällä USB3-multiplekseri (USB-C-liittimen kääntämisen mahdollistamiseksi), joka sisältyy MCU-ohjainpiirin USB3:lle tarjoamaan tukeen. Tässä esimerkissä itsenäisesti toimivan esiohjelmoidun USB-C-porttiohjaimen käyttäminen on myös yksinkertaisin ratkaisu, jolla yksittäinen USB-C-liitäntä voidaan lisätä olemassa olevaan tuotetarjontaan.
Kuva 2. Lohkokaavio USB-C-liitännästä, joka toimii tehonsyötössä USB2-datan kera.
Suorituskyvyn suhteen USB-arkkitehtuurien huippua edustaa kuvassa 3 nähtävä keskittimeen perustuva järjestelmä. Keskitinpohjainen suunnittelu tarjoaa täyden joustavuuden ja suorituskyvyn millä tahansa USB-arkkitehtuurilla poistaen samalla datansiirron taakan keskusprosessorilta. Tämän tyyppistä järjestelmää käytetään yleisesti PC-telakoissa, näyttölaitteissa, autojen keskikonsoleissa ja muissa paikoissa, joissa tarvitaan useita USB-liitäntöjä.
Aiempien esimerkkien tapaan tässäkin suunnittelu tulee aloittaa määrittämällä haluttu ominaisuusjoukko. PC:n tapauksessa videosignaalit kulkevat todennäköisesti USB-C-liitännän kautta, mikä edellyttää Alt Mode -toimintojen tukemista. Verrattuna aiempien esimerkkien pelkkään lataukseen tai lataukseen USB-datan kera porttiohjaimen on siten tuettava Alt Mode -toimintoja. Sen vuoksi järjestelmän tulee sisältää myös tarvittavat piirit Alt Mode -kanavien läpi kulkevassa dataliikenteessä käytettävän protokollan suuntien ja keskeytysten hallitsemiseksi.
Kuva 3. USB-keskittimeen perustuva arkkitehtuuri, joka tukee A- ja C-tyypin liitäntöjä sekä Alt Mode -toimintamuotoa.
Moniporttisen ’SmartHub’-yksikön käyttö tässä järjestelmässä antaa suunnittelijoille mahdollisuuden entistä tehokkaampaan järjestelmätason suunnitteluun. Vaikka suunnittelija voisi yksinkertaisesti ottaa käyttöön monipuolisemman porttiohjaimen ja jättää toiminnot erilleen, ohjaimen käyttö keskittimen sisäisenä porttiohjaimena alentaa materiaalikustannuksia ja koko valmistusprosessin yleiskuluja. Tämä pätee erityisesti moniporttisiin järjestelmiin, joissa datankulun ja tehonkulutuksen koordinointi on tärkeää.
Tämä esimerkki kuvaa portinhallinnan edistynyttä versiota, joka yleistyy jatkuvasti, kun USB-C tulee yhä useammin saataville natiivina osana ohjainpiirejä ja suorittimia. USB-C:n kaikki toiminnot kuten porttienkäytön hallinta, tehonjakelu, Alt Mode -tuki ja Billboard-tuki sijaitsevat keskittimessä. Tässä arkkitehtuurissa itsenäinen porttiohjain on korvattu lähetin-vastaanottimella, joka sisältää USB-C-liitännän fyysisen kerroksen samaan tapaan kuin Ethernet-verkot on suunniteltu.
Alt Mode -toiminnon tukemiseksi ratkaisuun on sisällytetty ulkoinen ristikytkentä-mux, joka ohjaa videodatan DP-liittimeen ulkoisen näyttölaitteen käytön tukemiseksi. Ratkaisu sisältää myös käytännöllisen USB-A- ja USB-C-liittimien yhdistelmän, joka on tyypillinen tämän päivän järjestelmille.
Tämä ratkaisu sisältää myös tietoturvapiirin, joka mahdollistaa järjestelmän laiteohjelmiston turvalliset päivitykset, jotka vastaavat nykyajan yhä kasvaviin verkko- ja tietoturvaa koskeviin huolenaiheisiin. Microchipin ECC608A-piirin kaltaiset erittäin turvalliset mikropiirit antavat suunnittelijoille mahdollisuuden varmistaa koodin turvallisuus käyttämällä NIST-, SHA-256- ja HMAC-hash-tiedostoja sekä AES-128-salausta ilman, että piirivalmistaja edes tietää järjestelmän omistajan salausavainta.
Lisäyksiä aiempiin BOM-esimerkkeihin ovat:
- Moniporttinen USB SmartHub: Sisältää ohjaimen ja useita USB-liitäntöjä.
- Ristikytkentä-mux: Siirtää useita datakanavia toisiin paikkoihin.
- DP-liitin: Hoitaa kytkennän videonäytölle.
- Yksi tai useampi A-tyyppinen liitin.
- A-tyyppinen teholähde.
- Tietoturva-IC: Mahdollistaa turvalliset koodipäivitykset keskittimelle.
- USB-C -lähetin-vastaanotin kullekin portille.
- DC/DC-muunnin kullekin USB-C PD -portille.
USB SmartHub -sovelluksen käyttö integroidun PD-tehonjakelun kanssa mahdollistaa myös muut järjestelmätason ominaisuudet. HostFlex-tekniikkaa sisältävät kehittyneet järjestelmät tarjoavat uuden luokan joustavuutta ja toiminnallisuutta antamalla käyttäjille mahdollisuuden ottaa näytöt ja tulostustoiminnot huomioon riippumatta siitä, mihin porttiin ne ovat yhteydessä, sillä mistä tahansa C-tyypin portista voi tulla järjestelmän isäntä.
Tehon tasapainotukseen tarkoitettu PB-toiminto (Power Balancing) lisää myös järjestelmän joustavuutta, sillä se on tietoinen järjestelmän käytettävissä olevasta kokonaistehosta ja toteuttaa käyttäjän määrittelemää algoritmia tehon jakamiseksi. Käyttäjä voi päättää jaetaanko tehoa kytkentäjärjestyksessä vai laitetyypin tai kytkettyjen laitteiden lukumäärän tai näiden kaikkien yhdistelmän perusteella.
Microchipin SmartHub on kaikki nämä ominaisuudet mahdollistava tekniikka, joka koordinoi kaikkien samanaikaisten USB-C PD -liitäntöjen alustatason hallintaa. Microchip on aiemmin jo demonnut näitä järjestelmätason ominaisuuksia esittelemällä muun muassa HostFlex Multihost -ratkaisun (rinnakkaisisäntä-toiminnot) sekä tehonbalansoinnin hyödyntämistä moniporttisessa USB 3.1 SmartHub -ratkaisussa integroidun PD-toiminnon kera.
Käyttöön ilman riskejä
USB-C on liitäntä, joka mahdollistaa monimuotoisen datan ja eri tehotasojen välittämisen yhtaikaa saman liittimen kautta. Edistykselliset järjestelmäominaisuudet kuten HostFlex ja Power Balancing voidaan helposti toteuttaa hyödyntämällä SmartHub-rakennetta, kun taas perustason latauspiirit voidaan toteuttaa yksinkertaisilla ja helposti mukaan liitettävillä porttiohjaimilla. Tulevaisuudessa nämä liitäntäpiirit lisäävät edelleen sovellusten integrointitasoa ja helpottavat toteutusta.
Suunnittelijoiden ei tarvitse pelätä USB-C-liitännän lisäämistä suunnitelmiinsa, koska Microchipin kaltaiset puolijohdefirmat toimittavat ainutlaatuisia ja erittäin suorituskykyisiä porttiohjaimia, lähetin-vastaanottimia ja DC/DC-muuntimia sovelluksia varten sekä tarjoavat vahvaa teknistä tukea, jota tarvitaan suunnittelutyön helpottamiseksi ja riskien vähentämiseksi.
Lisätietoja:
Microchip’s SmartHub IC Design Center: https://www.microchip.com/design-centers/usb/product-families/smarthub