ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2026  # megabox i st f wallpaper

IN FOCUS

IoT-piireillä päästöt kuriin

IoT-teknologia on nousemassa keskeiseksi työkaluksi kestävän kehityksen ratkaisuissa. Vaikka laitteiden valmistus ja käyttöönotto vaativat energiaa, pitkän aikavälin säästöt ylittävät kulut moninkertaisesti. Tuoreiden analyysien mukaan IoT voi säästää jopa kahdeksankertaisesti sen energiamäärän, jonka se itse kuluttaa elinkaarensa aikana.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

bonus # recom webb
TMSNet  advertisement
ETNdigi
2026  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Käyttökokemuksen pitää säilyä isolla ruudulla

Tietoja
Kirjoittanut Christi James, Todd Severson ja Henry Wong, Cypress Semiconductor
Julkaistu: 22.04.2014
  • Suunnittelu & ohjelmointi

Kosketusnäyttöjen koko kasvaa, mutta niiden pitäisi olla yhtä nopeita ja tarkkoja kuin pienemmällä ruudulla. Käyttökokemuksen pitää säilyä samalla tasolla.

Artikkelin ovat kirjoittaneet Cypress Semiconductorin Christi James, Todd Severson ja Henry Wong. Christi (kuvassa ylh.) on TrueTouch-ratkaisujen tuotemarkkinoinnista vastaava spesialisti. Hänellä on pr-alan tutkinto Pepperdinen yliopistosta. Todd (kuvassa alh.) vastaa TrueTouch-tuotteiden teknisestä markkinoinnista. Hänellä on mekaniikkasuunnittelun tutkinto USA:n armeijan akatemiasta. Henry on TrueTouch-tuotteiden markkinoinnista vastaava johtaja Cypressillä. Hänellä on tietojenkäsittelyn insinöörin tutkinto Rensselaerin polyteknisestä instituutista. Henryllä on yli 16 vuoden kokemus suunnittelusta ja markkinoinnista puolijohdealalla ja kulutuselektroniikassa.

Joka vuosi kosketusnäytöllisten laitteiden ruutukoko kasvaa. Kosketus saavutti suosiota älypuhelimissa ja on nopeasti edennyt tabletteihin. Windows 8:n julkistamisen myötä kosketus on laajenemassa ultrabook-koneisiin, sylimikroihin sekä all-in-one -mikroihin. Näytön koon kasvaessa kapasitiivisen näytön suurin haaste on säilyttää sama suorituskyky, johon käyttäjät ovat tottuneet matkapuhelimissa. Tämä tarkoittaa enemmän skannattavaa suuremmalla pinnalla samassa ajassa. Lisäksi prosessorin pitää tulla toimeen pienemmällä signaalilla suuremman kohinan seassa ja silti säilyttää nopeus, tarkkuus ja nopea vaste, joita haluttavalta käyttökokemukselta edellytetään.

Kaikissa kosketusnäyttölaitteissa on halua siirtyä suurempiin näyttökokoihin. Kapasitiivisten kosketusnäyttöjen koko kasvaa uusia markkinoita varten, mutta niiden koko kasvaa myös nykyisissä tuotekategorioissa. Älypuhelinvalmistajien kärkinimet ovat siirtymässä superpuhelimiin, joissa suurempi näyttö on tärkeä erottautumisen väline.

Kulutuselektroniikan tärkeimmät tuoteryhmät tänään ovat 3-5 tuuman näytöllä varustetut älypuhelimet, 5-8 tuuman ruudulla varustetut superpuhelimet tai phabletit, 8-11,6-tuumaiset tabletit, utrabookit, joiden näyttö yltää 11,6 tuumasta 15,6 tuumaan sekä kannettavat tietokoneet, joissa nähdään jopa 17-tuumaisia näyttöjä. Tablettien myynti on sen 5-vuotisen historian aikana kasvanut enemmän kuin minkään muun mobiililaitteen koskaan, ja sen myyntilukujen ennustetaan ohittavan PC-myynnin lukemat vuoteen 2015 mennessä (ks. kuva 1). Kehitys on saanut PC-valmistajat siirtämään fokustaan kosketuslaitteiden suuntaan, esimerkiksi laitteisin jotka toimivat sekä sylimikroina että tabletteina.



Kuva 1. Tablettien myynti on kasvanut selvästi nopeammin kuin PC-koneiden tai kannettavien tietokoneiden myynti.

Käyttäjät odottavat suurempinäyttöisiltä laitteilta samaa suorituskykyä ja kosketuskokemusta kuin älypuhelimiltaan. Käyttökokemuksen avaintekijöihin kuuluvat herkkyys, useiden liikkuvien kosketusobjektien seuraaminen, sormien tunnistaminen ja seuraaminen erilaisissa kohinaympäristöissä ja hyväksyttävän tehonkulutuksen ylläpitäminen halutun akkukäytön saavuttamiseksi. Käyttökokemuksessa on olennaisesti kyse siitä, miten järjestelmä reagoi kun näyttöä kosketetaan erilaisia olosuhteissa.

Kapasitiivinen kosketunäyttö toimii kohdistamalla jännitteen laitteen anturipaneeliin, mikä luo signaalivarauksen. Kosketusohjain vastaanottaa tämän signaalin, ja kykenee määrittelemään anturin kapasitanssin mittaamalla muutoksen anturin varauksessa. Ohjaimen vastaanottama virta vastaa paneelin kapasitanssia jaettuna lähetysjännitteellä. Piiri kykenee poistamaan nimellisen, kosketuksesta aiheutumattoman varauksen niin, että järjestelmä voi keskittyä mittaamaan sormen kosketuksesta aiheutuvaa anturivarauksen muutosta. Tämä parantaa kosketuksen mittausta, resoluutiota ja herkkyyttä.

Kapasitiivisen kosketusnäytön kasvaessa myös tekninen haaste kasvaa. Suurin ongelma suuremmissa näytöissä on se, että lähetysjännitteen pitää peittää laajempi alue, ja anturin resistanssi ja kapasitanssi kasvavat. Kosketuspaneelin kokoa rajoittaa suurempi parasiittinen kapasitanssi ja resistanssi, jotka vaikuttavat RC-piirin aikavakioon, mikä johtaa hitaanpaan lähetystaajuuteen. Lähetyksen toimintataajuus vaikuttaa signaalin jännitteen asettumiseen (settling), virkistysnopeuteen ja tehonkulutukseen. Tavoite on määritellä olosuhteet korkeimmalle lähetystaajuudelle, jotta kosketusvaste olisi vakaa koko paneelin alueella niin, että samalla skannausaika olisi mahdollisimman lyhyt ja tehonkulutus mahdollisimman pieni.

Useimmat kulutuselektroniikan laitteet vaativat kosketusohjaimen, jonka virkistystaajuus on suurempi kuin 100 hertsiä, tai noin 10 millisekuntia. Tietyt sovellukset, kuten digitaaliset piirtoalustat tai myyntipäätteet (point of sale terminals) edellyttävät vieläkin suurempaa virkistystaajuutta tunnistaakseen nopeita kynän vetoja ja liikkeitä.

Isommilla ruuduilla o haastavaa pitää yllä korkeaa virkistystaajuutta, sillä kosketusohjaimen pitää pyyhkäistä suurempi ala, kerätä data kaikista anturiristeyksistä, ja prosessoida tämä data. Kaksi eniten virkistystaajuuteen vaikuttavaa tekijää ovat näytön skannauksen nopeu ja datan prosessoinnin nopeus. 17-tuumaisella näytöllä skannattavia pisteitä on 11 kertaa enemmän kuin 5-tuumaisella ruudulla (3108 vs. 275). Jotta käyttökokemus säilyisi vastaavana, pitää 17-tuumaisen ruudun ohjaimella olla selvästi enemmän skannaus- ja laskentatehoa.

Yksi tekniikka skannausongelman ratkaisemiseen on varmistaa, että kosketusohjaimessa on riittävästi vastaanottokanavia, jotta näytön voi skannata yhdellä ajolla. Useimmat kosketusnäytöt koostuvat lasipinnan alla kulkevista anturikuvioista, jotka muodostavat pysty- ja vaakasuunnassa kulkevien "solujen" matriisin, jossa X on lähetys- ja Y vastaanottopuoli tai päinvastoin. Vastaanottokanava kerää dataa ja muuntaa kapasitanssin muutoksen jokaisessa solussa AD-muuntimella isäntäprosessorille, joka tulkitsee mihin kohtaan näyttöä sormella kosketaan. Jos vastaanottokanavien tai AD-muuntimien määrä ei riitä, koko paneelin skannaaminen vaatii useita skannauksia ja enemmän aikaa. Tämä tarkoittaa, että tietyssä ajassa otettavien näytteiden määrä on rajallinen, mikä heikentää käyttökokemusta.

Laskentatehoa voidaan kasvattaa lisäämällä kosketusohjaimeen suurempi prosessori tai siirtämällä osa laskennasta järjestelmän isäntäprosessorille. Tällöin kapasitanssidataa pitää lähettää isäntäprosessorille ja algoritmeja pitäisi ajaa sovellus- tai grafiikkaprosessorilla. Yksi mahdollisuus on käyttää kosketusohjainta skannaamaan anturiverkko, etsiä ensimmäistä kosketusta ja lähettää sen kuva isäntäorosessorille. Isäntä prosessoisi sitten koko matriisin , suodattaisi kohinan, löytäisi kosketuskoordinaatit ja seuraisi sormien liikettä. Tällaisen rinnakkaisen prosessoinnin avulla raskas laskenta voitaisiin tehdä usean gigahertsin nopeudella moniytimisillä suorittimilla, jotka toimisivat kosketuspaneelin ja näytön isäntänä.

Kosketuspaneelin anturi toimisi ikään kuin suurena antennina, joka kykenee sieppaamaan ja tunnistamaan järjestelmän ja ympäristön kohinan, kuten loisteputkien valot, LCD-näytöt tai laturit.



Kuva 2. Kosketusanturin täytyy tunnistaa kosketukset ja suodattaa pois kaikki ylimääräinen kohina.

Suuremmat näytöt toimivat suurempina antenneisina, joten kohina kyllästää vastaanottokanavan helpommin. Tämä voi suuresti heikentää kosketuksen suorituskykyä, ja aiheuttaa vääriä kosketuksia, kosketuksen ohittamista tai jopa lukkiutuvia näyttöjä, jotka eivät lähetä minkäänlaista dataa. Häiriöiden ylittämiseksi kosketusohjaimen täytyy pystyä joko vahvistamaan signaalia tai vähentämään kohinaa. Keskeisiä tapoja saavuttaa parempi signaali-kohinasuhde (SNR, signal to noise ratio) ovat lähetysjännitteen nostaminen signaalin vahvistamiseksi, laitteistopohjaisen tai digitaalisen suodattamisen käyttäminen kohinan pienentämiseksi tai taajuushyppelyn hyödyntäminen, jotta siirrytään pois kohinaisilta taajuuksilta.

Signaali-kohinasuhde kasvaa lineaarisesti suhteessa lähetyksen jännitteeseen. Lähetysjännite saadaan joko latauspumpusta (charge pump) tai VDDA-ajurista. Latauspumpulla elektroniikkalaitteista saatava 2,7-3 voltin tyypillinen jännite voidaan kasvattaa suuremmaksi. Ongelma isoilla näytöillä on se, että latauspumpun teho on rajallinen suuren kapasitenssin paneeleissa. Tämä tarkoittaa käytännössä, että suunnitteluun pitää lisätä ulkoinen pumppu tai teholähde, mikä voi lisätä kustannuksia ja tehonkulutusta.

Mikäli signaali ei ole riittävän voimakas, toinen vaihtoehto on minimoida kohina. Ensimmäinen keino on suotimien avulla luoda selkeämpi ja putaampi kuva kapasitanssista. Mikäli tämä ei riitä, turvaudutaan yleensä taajuushyppelyyn, jotta löydetään taajuus jossa häiriöitä on vähemmän. Kuten aiemmin mainittiin, suuremmilla näytöillä parasiittinen kapasitanssi ja resistanssi ovat suuremmat, mikä vaikuttaa RC-piirin aikavakioon ja johtaa hitaampaan lähetystaajuuteen. alhaisempi taajuus tarkoittaa, että paneelia on vaikeampi skannata kohina-alueen ulkopuolella. Korkeampi lähetystaajuus antaa ohjaimelle enemmän pelivaraa siirtyä pois kohinan lähteestä. 350 megahertsin tai sitä suurempi maksimilähetystaajuus on ideaalinen, mutta tarvitaan kompromissi signaali-kohinasuhteen, virkistystaajuuden ja tehonkulutuksen välillä jotta näyttö saadaan optimoitua asiakkaan tavoitteiden mukaisesti.

Kun mobiilisuudesta on tullut niin iso osa elämäämme, tehonkulutus on avaintekijöitä, joiden perusteella valitsemme kannettavia elektroniikkalaitteitamme. Markkinatutkimukset osoittavat, että valtaosa käyttäjistä uskovat, että laitteen toiminta-aika akkuvoimalla on yksi tärkeimpiä ominaisuuksia uusia kannettavia laitteita ostettaessa (ks. kuva 3).



Kuva 3. Toiminta-aika akulla kuuluu kolmen tärkeimmän kriteerin joukkoon, kun valitsemme uutta kannettavaa laitetta.

Tehonkulutus yleensä kasvaa näytön suurentuessa, koska LCD-paneelin koko kasvaa. LCD:n osuus järjestelmän kokonaistehonkulutuksen kannalta on iso. Yksi keino pidentää akun käyttöikää on varustaa järjestelmä suuremmalla akulla, mutta tämä kasvattaisi laitteen painoa ja tekisi siitä ikävämmän kantaa mukana. Toinen vaihtoehto olisi heikentää suorituskykyä pienentämällä näytön virkistystaajuutta, pienentämällä lähetysjännitettä, ottamalla pois käytöstä erilaisia digitaalisia suotimia tai käyttämällä pienimpiä mahdollisia analogisia ja digitaaliia teholähteitä. Nämäkin keinot vaikuttaisivat negatiivisesti käyttökokemukseen.

Kun alhainen paino ja korkea suorituskyky ovat hyvän laitteen kulmakiviä, paras keino pidentää toiminta-aikaa akulla on optimoida tehonkulutus järjestelmän yksittäisten komponenttien osalta. Kosketusnäytön ohjaimen kannalta tämä trkoittaa, että laitteen tehonhallintamenetelmien pitää olla joustavia.

Kokonaistehonkulutus riippuu laitteen käyttöasteesta. Älykkäässä ja energiatehokkaassa kosketusohjaimessa olisi useita tehonhallinnan tiloja aktiiviseen, pienen tehokulutuksen ja torkkumoodiin. Tätä kaikkea hallitaan kosketusohjaimen konfigurointiparametreillä.

Jotta käyttökokemus säilyy laadukkaana kosketusnäytön koon kasvaessa, tarvitaan järjestelmätason lähestymistä. Fysiikka rajoittaa kosketusnäyttöjä ja mikäli kapasitiivinen kosketus haluaa pysyä kannettavan kulutuselektroniikan ykkösvaihtoehtona, tarvitaan sekä innovaatioita että integrointia. Paneeleja kehitetään nopeammiksi uusilla materiaaleilla ja isäntäprosessorien arkkitehtuuria muokataan niin, että ne voivat huoehtia osasta raskata laskentaa. Laitteiston ja ohjelmiston parannetaan jatkuvasti signaalin voimakkuutta samalla kun kohinaa poistetaan yhä tehokkaammin. Järjestelmäsuunnittelulla parannetaan tehonkulutusta ja lisätään toiminta-aikaa akulla. Kaiken tämän toteuttaminen kustannustehokkaasti säilyy suunnittelijoiden haasteena.

MORE NEWS

DigiKeyn uusien tuotteiden listaajilla oli kiireinen vuosi

DigiKey kasvatti tuotevalikoimaansa voimakkaasti vuonna 2025. Jakelijan varastoon lisättiin yli 108 000 uutta varastoitavaa komponenttia, jotka ovat saatavilla saman päivän toimituksella. Kaikkiaan DigiKey lisäsi järjestelmiinsä yli 1,6 miljoonaa uutta tuotetta vuoden aikana. Samalla jakelijan toimittajaverkosto kasvoi 364 uudella valmistajalla. Mukana ovat yhtiön perusliiketoiminta, Marketplace sekä Fulfilled by DigiKey -ohjelma.

Protoat Arduinolla? DigiKeyn webinaari voi auttaa

DigiKey ja Arduino järjestävät 12. helmikuuta webinaarin, jossa pureudutaan nopeaan prototypointiin Arduinon uusilla työkaluilla. From board to build: Using UNO Q and App Lab -tilaisuus järjestetään Suomen aikaa klo 17.

Tässä Intel on edelleen hyvä: 86 ydintä ja 128 PCIe5-linjaa

PC-prosessoreissa Intel ei ole enää yksinvaltias. AMD on haastanut yhtiötä viime vuosina erittäin kovaa, ja tekoälyn kouluttamisessa GPU-korteilla Nvidia on noussut ylivoimaiseen asemaan. Työasemapuolella asetelma on kuitenkin toisenlainen. Uusi Xeon-sukupolvi muistuttaa, että raskaat ammattilaisjärjestelmät ovat yhä Intelin vahvinta aluetta.

Ethernet korvaa hitaat kenttäväylät autoissa

Autoteollisuudessa tapahtuu hiljainen mutta perustavanlaatuinen muutos. Ethernet etenee nyt myös auton alimmalle verkottamisen tasolle. Tavoitteena on korvata perinteiset, hitaat kenttäväylät kuten CAN ja LIN. Tuore esimerkki kehityksestä on Microchip Technologyn ja Hyundain yhteistyö. Yhtiöt tutkivat 10BASE-T1S Single Pair Ethernetin käyttöä tulevissa ajoneuvoalustoissa.

Tekoälyagenttien käyttöoikeudet voivat olla riski

Työpaikoilla yleistyvä tekoälyagenttien käyttö voi tuoda merkittäviä tietoturvariskejä, varoittaa kyberturvayritys Check Point Software. Viime viikkojen OpenClaw-keskustelu on tuonut esiin, miten itsenäisesti toimivat tekoälyagentit voivat koskettaa organisaation järjestelmiä samalla tavalla kuin oikeat työntekijät, ilman asianmukaisia hallinta- ja valvontamekanismeja.

Tekoäly auttaa suunnittelemaan antennin

Taoglas on julkaissut tekoälyyn perustuvan antennien suosittelutyökalun. Yhtiön mukaan kyseessä on maailman ensimmäinen AI-vetoinen ratkaisu, joka ohjaa antennin ja RF-komponenttien valintaa automaattisesti.

Tesla ei ole enää Euroopan ykkönen

Sähköautot piristivät Euroopan autokauppaa vuonna 2025. Kokonaiskasvu jäi silti vaatimattomaksi. Suurin muutos nähtiin merkkien välisessä järjestyksessä. Volkswagen nousi Euroopan myydyimmäksi täyssähköautobrändiksi ohi Teslan.

Mikroledinäytön suurin ongelma ratkaistu

Microledeihin pohjautuvat näytöt etenevät kohti VR- ja AR-laseja vääjäämättä. Tuore tutkimus Korean tieteen ja teknologian tutkimusinstituutista (KAIST) osoittaa, miksi OLED jää lopulta väistämättä kakkoseksi.

Kiintolevyn nopeus lähestyy flashia

Kiintolevy ei ole katoamassa AI-aikakaudella. Päinvastoin. WD eli entinen Western Digital esitteli Innovation Day -tapahtumassaan roadmapin, jossa HDD:n suorituskyky kasvaa tasolle, joka aiemmin kuului vain flash-muisteille.

SiTime ostaa Renesasin ajoituspiirit 1,5 miljardilla dollarilla

SiTime ostaa Renesas Electronicsin ajoituspiiriliiketoiminnan noin 1,5 miljardin dollarin kaupassa. Kauppa tehdään käteisellä ja SiTimen osakkeilla, ja sen odotetaan toteutuvan vuoden 2026 loppuun mennessä viranomaishyväksyntöjen jälkeen.

Tämä on uusi normaali: tietoturva-aukot pitää paikata tunneissa

Microsoft Officesta löytynyt tuore haavoittuvuus osoittaa, kuinka nopeasti nykypäivän tietoturva-aukot päätyvät hyökkääjien käyttöön. Kyse ei ole enää yksittäisten tutkijoiden manuaalisesta työstä, vaan pitkälle automatisoidusta prosessista.

Tamperelainen Vexlum ratkaisee ison ongelman kvanttitietokoneissa

Kvanttitietokoneiden kehitystä kuvataan usein kubittien lukumäärällä, mutta Vexlumin toimitusjohtajan ja perustajaosakkaan Jussi-Pekka Penttinen mukaan tämä mittari ei kerro koko totuutta. Penttisen mukaan hyödyllinen skaalautuvuus määräytyy ennen kaikkea kubittien laadusta, ei pelkästä määrästä. - Hyödyllisessä skaalautuvuudessa kyse ei ole vain kubittien lukumäärästä vaan erityisesti myös kubittien laadusta eli koherenssiajasta ja kubittien välisestä vuorovaikutuksesta.

Vexlum keräsi 10 miljoonaa euroa puolijohdelaserien tuotannon skaalaamiseen

Suomalainen Vexlum on kerännyt 10 miljoonan euron rahoituksen puolijohdelasereiden valmistuksen kasvattamiseen. Kyseessä on tiettävästi suurin pohjoismaisen fotoniikkayrityksen keräämä seed-vaiheen rahoituskierros.

Insta on pitkään tehnyt oikeita valintoja

Insta Group on kasvanut lähes 200 miljoonan euron teknologiakonserniksi 15 peräkkäisen kasvuvuoden aikana. Nyt yhtiö vie seuraavan askeleen ja vahvistaa johtamismalliaan. Konsernille nimitetään oma toimitusjohtaja, ja molemmat suuret liiketoiminta-alueet saavat omat vetäjänsä. Kyse ei ole yhtiön pilkkomisesta, vaan kasvun pakottamasta rakenteellisesta muutoksesta.

TI ostaa Silicon Labsin miljardikaupassa

Texas Instruments ostaa Silicon Labsin noin 7,5 miljardin dollarin käteiskaupalla. Kauppahinta on 231 dollaria Silicon Labsin osakkeelta. Kauppa edellyttää viranomaisten ja Silicon Labsin osakkeenomistajien hyväksyntää. Järjestelyn odotetaan toteutuvan vuoden 2027 alkupuoliskolla.

Mikä on hybridihätäpuhelu?

Hybridihätäpuhelu eli Hybrid eCall on ajoneuvojen hätäpuhelujärjestelmä, joka käyttää sekä 4G LTE -verkkoa että perinteisiä 2G ja 3G -verkkoja. Tavoite on yksinkertainen. Hätäpuhelu ja siihen liittyvä data saadaan varmasti perille kaikissa olosuhteissa.

FPGA vastaa kvanttiuhkaan ennen kuin se on todellinen

AMD:n uusi Kintex UltraScale+ Gen 2 -FPGA-sukupolvi ei yritä voittaa suorituskykykilpailua pelkillä logiikkasoluilla. Se vastaa ongelmaan, joka on jo näkyvissä mutta vielä harvoin ratkaistu. Miten laitteet suojataan kvanttiajan uhkilta ennen kuin uhka realisoituu?

AI-palvelimen teho-ongelmaan ratkaisu

Tekoälypalvelimissa laskentateho kasvaa nopeammin kuin virransyöttö pysyy perässä. Pullonkaula ei ole enää prosessori vaan teho, tila ja lämpö. Tätä taustaa vasten Microchip Technology toi markkinoille uuden MCPF1525-tehomoduulin.

Ams OSRAM myy analogiset anturinsa Infineonille

Ams OSRAM myy ei-optisen analogi- ja mixed-signal-anturiliiketoimintansa Infineon Technologiesille 570 miljoonan euron käteiskaupalla. Kaupan odotetaan toteutuvan vuoden 2026 toisella neljänneksellä viranomaislupien jälkeen.

Rohde & Schwarz toi 44 gigahertsin analyysin keskiluokkaan

Saksalainen Rohde & Schwarz laajentaa keskiluokan mittalaitetarjontaansa uudella FPL1044 -spektrianalysaattorilla. Laite ulottuu 44 gigahertsiin asti, ja on samalla ensimmäinen tämän hintaluokan analysaattori, joka yltää Ka-alueelle.

bonus # recom webb mobox
2026  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Älyä virtaamien mittaukseen

Virtaamamittaus on monissa laitteissa kriittinen mutta usein ongelmallinen toiminto. Perinteiset mekaaniset anturit kuluvat ja jäävät sokeiksi pienille virtausnopeuksille. Ultraäänitekniikkaan perustuvat valmiit moduulit tarjoavat nyt tarkan, huoltovapaan ja helposti integroitavan vaihtoehdon niin kuluttaja- kuin teollisuussovelluksiin.

Lue lisää...

OPINION

Reunatekoäly pakottaa muutoksiin kentällä

Vuosi 2026 muodostuu liikkuville kenttätiimeille käännekohdaksi. Kentällä käytettävä teknologia ei ole enää tukiroolissa, vaan keskeinen osa päätöksentekoa, tehokkuutta ja turvallisuutta. Reunatekoäly, luotettavat yhteydet ja laitetason tietoturva ovat siirtyneet nopeasti vapaaehtoisista valinnoista välttämättömyyksiksi, kirjoittaa Panasonic TOUGHBOOKin Euroopan johtaja Steven Vindevogel.

Lue lisää...

LATEST NEWS

  • DigiKeyn uusien tuotteiden listaajilla oli kiireinen vuosi
  • Protoat Arduinolla? DigiKeyn webinaari voi auttaa
  • Tässä Intel on edelleen hyvä: 86 ydintä ja 128 PCIe5-linjaa
  • Ethernet korvaa hitaat kenttäväylät autoissa
  • Tekoälyagenttien käyttöoikeudet voivat olla riski

NEW PRODUCTS

  • Eikö 8 bittiä enää riitä? Tässä vastaus
  • Maailman pienin 120 watin teholähde DIN-kiskoon
  • Terävä vaste pienessä kotelossa
  • Click-kortilla voidaan ohjata 15 ampeerin teollisuusmoottoreita
  • Pian kännykkäsi erottaa avaimen 11 metrin päästä
 
 

Section Tapet