ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Ajastus menee uusiksi pienissä laitteissa

SiTimen Titan-alustan MEMS-resonaattorit mullistavat 4 miljardin dollarin resonointikomponenttien markkinan. Ne ovat jopa seitsemän kertaa kvartsia pienempiä, mutta samalla kestävämpiä, energiatehokkaampia ja helpompia integroida. Älykelloista lääkinnällisiin implantteihin, IoT-laitteisiin ja Edge AI -sovelluksiin Titan avaa laitevalmistajille uusia mahdollisuuksia suunnitella aiempaa pienempiä, älykkäämpiä ja luotettavampia tuotteita.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Pysyväismuisti tehostaa tekoälyä ja koneoppimista

Tietoja
Kirjoittanut Veijo Ojanperä
Julkaistu: 03.08.2021
  • Devices
  • Embedded

Palvelinkeskusten kannattaisi hyödyntää pysyväismuistia tekoälyyn ja koneoppimiseen perustuvien sovellusten pullonkaulojen poistamiseksi ja suorituskyvyn parantamiseksi. Hyperkonvergoituun arkkitehtuuriin perustuva NVDIMM-moduuliratkaisu tarjoaa tähän tehokkaan välineen.

Artikkelin kirjoittaja Arthur Sainio on SMART Modular Technologiesin tuotemarkkinoinnin johtaja. Hän vastaa uusien teknologioiden kuten MRAM- ja NVDIMM-muistien kehittämisestä IIoT-, tietoliikenne-, ilmailu- ja puolustussovelluksiin. Ennen SMART Modular Technologiesin palvelukseen siirtymistään hän toimi markkinointijohtajana Hitachi Semiconductorilla. Arthurilla on tutkinnot San Francisco State- ja Arizona State -yliopistoista.

Nykyisten datakeskusten rajallinen keskusmuistikapasiteetti ja massamuistien kehno I/O-suorituskyky ovat kaksi eniten toimintaa rajoittavaa pullonkaulaa. Näitä kahta kipupistettä on historiallisesti pidetty erillisinä tietotekniikan käsitteinä: keskusmuisti on koodin ja datan väliaikainen varasto käynnissä olevan sovelluksen tukemiseksi, kun taas levyt ja muut pysyvät tallennustilat säilyttävät tietoja pitkillä aikaväleillä. Kun sovelluksen on käytettävä tietoja levyltä (mitä tapahtuu usein suurilla tietojoukoilla, joita ei voida pitää käyttömuistissa), hidas hakuaika heikentää merkittävästi sovelluksen suorituskykyä.

Uudentyyppisen pysyväismuistin (Persistent Memory) käyttöönotto on merkinnyt käännekohtaa perinteisten datakeskusten muistirakenteissa ja tallennushierarkiassa. Se perustuu hyperkonvergoituun arkkitehtuuriin, joka parantaa dramaattisesti tallennuspalvelimien suorituskykyä.

Tekoäly ja koneoppiminen rajussa kasvussa

Datamäärien räjähdysmäinen kasvu on johtanut tekoälyyn (AI) ja koneoppimiseen (ML) perustuvien sovellusten valtavaan kasvuun. Perinteisiä järjestelmiä ei kuitenkaan ole suunniteltu vastaamaan haasteeseen, jota massiivisiin tietojoukkoihin pääsy vaatii. IT-järjestelmien valtavirtaan siirtyvien AI- ja ML-sovellusten hankalin ongelma on tarve lyhentää tiedon löytämisen ja omaksumisen kokonaisaikaa, joka koostuu dataintensiivisen ETL-prosessin (Extract, Transform, Load) ja tallennuspisteiden määrityksen aiheuttamasta kuormituksesta.

Tekoäly ja koneoppiminen luovat erittäin kovat vaatimukset I/O- ja laskentaoperaatioiden suorituskyvylle, josta vastaa GPU-suorittimilla kiihdytetty ETL-prosessi. Vaihteleva I/O- ja laskentasuorituskyky riippuu järjestelmän kaistanleveydestä ja latenssista. Tekoäly- ja ML-sovellusten tarvitsema korkean suorituskyvyn data-analyysi vaatii järjestelmän, jolla on mahdollisimman suuri kaistanleveys ja alhainen latenssi.

IDC-tutkimusyhtiön (International Data Corporation) julkaiseman tekoälyn käyttöä koskevan raportin (Worldwide Artificial Intelligence Spending Guide) mukaan tekoälyä ja koneoppimista hyödyntäviin järjestelmiin käytettävät menot kasvavat 97,9 miljardiin dollariin vuoteen 2023 mennessä, mikä tarkoittaa kasvua yli 2,5-kertaiseksi viidessä vuodessa. Tämän laajenemisen edellyttämän laskentatehon on vastaavasti kyettävä pitämään yllä yhtä rajua kasvua.

Tavanomaisista keskusmuistiratkaisuista kuitenkin puuttuu tällä hetkellä elintärkeä komponentti, joka voi vastata tähän tarpeeseen: tallennusten pysyvyys, vaikka rinnakkaismuotoisia arkkitehtuureja jatkuvasti kehitetäänkin vastaamaan tulevaisuuden kasvaviin datatarpeisiin. Arkkitehtuureja hiotaan, mutta samaan aikaan järjestelmissä syntyvät tehohäviöt voivat maksaa datakeskuksille miljoonia dollareita. Tämä on synnyttänyt välittömän tarpeen haihtumattomille muistiratkaisuille.

Haihtumaton muisti lähemmäs CPU:ta

Tallennuspisteiden määritys on prosessi, jossa opetettavan verkon tila tallennetaan sen varmistamiseksi, että opitun tiedon tuloksia ei menetetä. Tämä on erityinen haaste tekoälyä ja koneoppimista hyödyntäville sovelluksille, koska prosessissa haaskataan suorituskapasiteettia ja käytetään paljon sähkötehoa tarjoamatta mitään etua itse sovellukselle. Datankäsittely muissa solmuissa saatetaan myös pysäyttää silloin, kun tietoja tallennetaan keskusmuistiin. Operaatio on myös hyvin kirjoitusintensiivinen, mikä pahentaa ongelmaa monissa tilanteissa, koska kiintolevyjen kaltaiset perinteiset muistiratkaisut toimivat tehottomasti, kun niihin kirjoitetaan dataa.

Koska keskusmuistin tallennuspisteiden määritys voi merkittävästi alentaa tekoäly- ja ML-sovellusten oppimisnopeutta, suunnittelijat haluavat siirtää haihtumatonta muistia entistä lähemmäs CPU:ta minimoidakseen tämän välttämättömän prosessin vaikutukset. Näin voidaan päästä parempaan tasapainoon datan ja laskennan välillä, jolloin järjestelmä pystyy paremmin vastaamaan toiminnan yleisiin tarpeisiin.

NVDIMM-muistit AI- ja ML-sovelluksissa

Haihtumattomaan muistitekniikkaan perustuvaa NVDIMM-muotoista (Non-Volatile Dual-Inline Memory Module) pysyväismuistia voidaan käyttää kirjoitusviiveensuhteen herkkien sovellusten suorituskyvyn parantamiseen tarjoamalla käyttöön pysyvän tallennuksen muistirakenne, joka yltää DRAM-muistien suorituskykyyn. Palvelinkeskuksilla on ainutlaatuinen mahdollisuus hyödyntää NVDIMM-moduuleja saavuttaakseen AI- ja ML-sovellusten vaatimat alhaiset viiveet ja tiukat suorituskykyvaatimukset ilman merkittäviä teknisiä ongelmia.

Kuva 1. Esimerkki pysyväismuistin käyttöön optimoidusta palvelimesta, joka sopii tekoälyä ja koneoppimista hyödyntäviin sovelluksiin.

Kun NVDIMM-moduulit kytketään palvelimeen, BIOS kartoittaa ne päämuistiin kuuluvana pysyväismuistin osiona. Sen jälkeen sovellus voi vapaasti käyttää tätä pysyväismuistia tallennuspisteiden nopeaan määritykseen. Vaihtoehtona olisi perinteinen lähestymistapa, jossa tallennuspisteiden tiedot siirretään I/O-pinon kautta NVMe-lohkon läpi ja tallennetaan SSD-lohkoon. Tämä järjestely lisää kuitenkin merkittävästi I/O-pinon ja NAND-flash-lohkon aiheuttamaa latenssia.

Kuva 2. Kullekin suorittimelle on varattu neljä 32 gigatavun NVDIMM-moduulia, jotka yhdessä muodostavat nopean tavuosoitettavan pysyväismuistin.

NVDIMM-moduuli on ihanteellinen ratkaisu tehokkaisiin AI- ja ML-palvelimiin. Dataintensiivisten ETL-toimintojen ja tallennuspisteiden määrityksen aiheuttamat kuormitukset voivat hyödyntää päämuistin sisältämää pysyvää muistialuetta, jolloin ne voivat toimia DRAM-muistien suoritustasolle yltävillä latensseilla (<100 ns) ja kaistanleveyksillä (25,6 GB/s).

Kuva 3. Tulokset haihtumattomien muistien ezFIO-vertailutestistä, jossa olivat mukana Intel Optane NVMe 2,5 ”SSD, MRAM NVMe U.2 SSD ja NVDIMM-psysyväismuisti.

NVDIMM-moduuleja käytetään nopeuttamaan tekoälysovellusten tallennuspisteiden määrittämistä, mutta niitä voidaan käyttää myös koneoppimista hyödyntävissä sovelluksissa suorituskyvyn parantamiseen ja algoritmien keräämien tietojen suojaamiseen. GPU-ytimiin perustuvat tallennuspalvelimet suorittavat algoritmeja, jotka ovat osa simulointia ja koneoppimista. NVDIMM-moduuleja voidaan käyttää suojaamaan GPU-pohjaisia palvelimia simulaatiotietojen menettämiseltä.

Algoritmien keräämien tietojoukkojen koot vaihtelevat yleensä kilotavuista (kB) teratavuihin (TB), ja kadonneet tiedot aiheuttaisivat tarpeen aloittaa työ uudelleen. Kun neljä palvelinta on konfiguroitu NVDIMM-moduuleilla, enintään yhden teratavun kokoiset tietojoukot voivat käyttää pysyväismuistia perinteisen tallennustilan sijasta parantamaan suorituskykyä dramaattisesti ilman riskiä tietojen menetyksestä.

Kuva 4. Esimerkkejä koneoppimisen tietojoukoista, joiden koot vaihtelevat 850 kilotavusta kahteen teratavuun.

Yleisin menetelmä tekoälyä ja koneoppimista hyödyntävien sovellusten tuottamien simulaatiotietojoukkojen (joilla on samanlaiset ominaisuudet) käsittelemiseksi on, että tietojoukot tuodaan verkosta InfiniBand- tai Ethernet-väylän kautta AI/ML-palvelimelle ja tallennetaan sitten SSD-välimuistiin datan häviämisriskin eliminoimiseksi. GPU siirtää sen jälkeen tietojoukon osat DRAM-muistiin, jossa laskenta voidaan suorittaa. Tyypillinen esimerkki tästä prosessista voisi olla laskennan suorittaminen tietojoukolle sen selvittämiseksi, edustavatko tiedot kuvaa kissasta vai koirasta. Kun laskenta on valmis, vastaus lähetetään takaisin verkkoon. Jos järjestelmä kaatuu prosessin aikana, kaikki laskelmat menetetään.

Vaihtamalla muistiratkaisu NVDIMM-moduuleihin tätä prosessia voidaan dramaattisesti virtaviivaistaa. Saapuvia tietojoukkoja ei tarvitse tallentaa SSD-välimuistiin, vaan ne voidaan siirtää suoraan DRAM-muistiin, jossa GPU voi heti aloittaa laskutoimitukset. Vastaus siihen, edustaako tietty tietojoukko kuvaa koirasta vai kissasta, voidaan näin saada useita kertaluokkia nopeammin. Silloin ei myöskään ole vaaraa tietojoukkojen tai laskelmien menettämisestä, koska NVDIMM on pysyväismuisti.

AI- ja ML-sovellusten lisäksi NVDIMM-moduuleja voidaan hyödyntää myös finanssialalle tarkoitetuissa FinTech-sovelluksissa. Ne vaativat korkeaa suorituskykyä (viiveiden lyhentämiseen ja transaktionopeuksien lisäämiseen), sillä finanssipuolella aika on rahaa. Käsitellyt tapahtumat on kirjattava ylös synkronisesti ennen seuraavan tapahtuman aloittamista. Tämä synkronointitoiminto on välttämätön tilinpidon kannalta, mutta se luo myös merkittävän pullonkaulan järjestelmään hidastamalla tapahtumien etenemisnopeutta.

NVDIMM-moduuleja käyttämällä voidaan välttää tavanomainen tietojen kirjaaminen SATA- tai NVMe SSD -asemiin. Sen sijaan, että lokitiedot lähetettäisiin I/O:n kautta Flash SSD:lle, ne voidaan sijoittaa suoraan huippunopeaan DRAM-muistiin, josta on muodostettu pysyväismuisti NVDIMM-moduulien avulla. Niiden ansiosta järjestelmä voi aina aloittaa seuraavan tapahtuman luottaen siihen, että edellinen tapahtuma on kirjattu turvalliseen paikkaan ilman riskiä tietojen menettämisestä.

Vaikka NVDIMM-moduuleja on ollut saatavilla jo vuosia, monilla eri sektoreilla tutkitaan jatkuvasti tämän tyyppisen pysyväismuistin hyödyntämistä AI- ja ML-sovelluksissa: pankkimaailmassa, vähittäiskaupassa, prosessiteollisuudessa, terveydenhuollossa, ammattitason palvelujärjestelmissä jne.

NVDIMM-moduulien tukema ekosysteemi, johon kuuluvat käyttöjärjestelmät, laitteiden käyttöönotto ja JEDEC-standardointi, on seurausta siitä, että lukuisat yritykset ovat tehneet yhteistyötä pysyväismuistin ottamiseksi käyttöön eri järjestelmissä. NVDIMM-ratkaisut tukevat tekoälyä ja koneoppimista hyödyntävien sovellusten yleistymistä tarjoamalla ihanteellisen tavan parantaa järjestelmien suorituskykyä.

MORE NEWS

Valmis algoritmi ihmisten tunnistamiseen tulee anturin mukana

Melexis on julkaissut MLX90642-lämpöanturiinsa valmiin, maksuttoman algoritmin, joka mahdollistaa ihmisten havaitsemisen, laskemisen ja paikantamisen ilman perinteisiä kameroita. Ratkaisu tuo seuraavan sukupolven havaitsemisen suoraan anturitasolle ja poistaa tarpeen kehittää omia lämpökuva-analytiikan algoritmeja.

Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä

Forbesissa julkaistussa artikkelissa Nokian Cloud and Network Services -yksikön tuote- ja teknologiajohtaja Kal De varoittaa, että teleoperaattoreiden on hylättävä perinteinen, reaktiivinen kyberturvamalli. Nykyiset uhkat kuten tekoälyn kiihdyttämät hyökkäykset ja nopeasti lähestyvä kvanttilaskennan murros pakottavat siirtymään ennakoiviin, automaattisiin puolustusmenetelmiin.

Microchipin uusi piiri toimii älykkäänä virran vahtikoirana

Microchip on esitellyt kaksi digitaalista tehonvalvontapiiriä, jotka mittaavat kannettavien ja energiarajoitteisten laitteiden virrankulutusta kuluttamatta itse käytännössä lainkaan tehoa. Uudet PAC1711- ja PAC1811-piirit toimivat itsenäisinä, MCU:sta riippumattomina ”älykkäinä virran vahtikoirina”, jotka herättävät prosessorin vasta, kun järjestelmässä tapahtuu jotakin merkittävää.

Sähkömittareista tuttu radio laajenee uusille alueille

STMicroelectronics laajentaa tunnetun ST87M01-NB-IoT-radiomoduulinsa käyttökohteita älymittareista kohti yleisiä IoT-ratkaisuja. Yhtiö on esitellyt kaksi uutta versiota moduulista sekä päivitetyn kehitysekosysteemin, joiden avulla kehittäjät voivat tuoda kapeakaistaisen NB-IoT-yhteyden nopeasti osaksi logistiikan, teollisuuden, energiaverkkojen ja kuluttajalaitteiden sovelluksia.

Tekoälyrobotteja nopeasti Linuxilla

Avocado-käyttöjärjestelmäänsä sulautettujen laitteiden valmistajille kauppaava Peridio esitteli Embedded World North America -messuilla uuden Jetson-pohjaisen tekoälyä hyödyntävän robottidemon. Demo havainnollisti, miten sen Avocado OS -käyttöjärjestelmä ja laitehallinta-alusta lyhentävät sulautettujen AI-laitteiden tuotantovaiheeseen siirtymisen jopa kuukausista päiviin.

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

Sähköinen liikenne on siirtynyt uuteen aikakauteen sekä maailmalla että Euroopassa. Gartnerin tuoreen ennusteen mukaan maailman teillä liikkuu ensi vuonna yli 116 miljoonaa sähköajoneuvoa, kun taas TechGaged Research raportoi, että polttomoottorit ovat nyt virallisesti vähemmistössä Euroopan unionissa.

Winbond vie teollisuuden DDR4-muistit uudelle tasolle

Winbond on esitellyt uuden 8 gigabitin DDR4-muistin, joka nostaa teollisuus- ja sulautettujen järjestelmien perinteisen DDR4-teknologian aivan uudelle suorituskyky- ja tehokkuustasolle. Yhtiö valmistaa uutuuden omalla 16 nanometrin prosessillaan, mikä tuo pienemmän sirukoon, alhaisemman virrankulutuksen ja paremman signaalieheyden – ominaisuuksia, joita teollisuus edellyttää pitkän elinkaaren laitteistoilta.

Ultravakaa kellosignaali auttaa tunnistamaan GPS-häirinnän

GNSS-vastaanottimien suojautuminen sekä häirintää että harhautusta vastaan paranee merkittävästi, kun vastaanotin käyttää tavallista kvartsikelloa tarkempaa ja stabiilimpaa referenssikelloa. Tähän tarpeeseen vastaa SiTimen uusi Endura Super-TCXO ENDR-TTT, joka on suunniteltu erityisesti ilmailun, puolustuksen ja teollisuuden PNT-sovelluksiin.

Tämä vuosi kuuluu iPhonelle, ensi vuonna koko markkina kutistuu

Applen vahva vuosi nostaa älypuhelinmarkkinat takaisin kasvuun, mutta edessä siintää jälleen notkahdus. IDC:n tuoreiden lukujen mukaan maailmanlaajuiset älypuhelintoimitukset kasvavat vuonna 2025 yhteensä 1,5 prosenttia 1,25 miljardiin laitteeseen. Suurin selittävä tekijä on Applen ennätysvuosi: iPhone 17 -sarjan vetämä kysyntä nostaa yhtiön toimitukset 247,4 miljoonaan laitteeseen, mikä merkitsee 6,1 prosentin vuosikasvua.

Tässä pahimmat virheet piirikortin suunnittelussa

PCB-suunnittelun virheet eivät aiheuta vain pieniä häiriöitä. Ne voivat rikkoa toiminnallisuuden, pysäyttää sertifioinnit, syödä akut tyhjiksi, heikentää luotettavuutta tai jopa tehdä tuotteesta mahdottoman valmistaa. Näin muistuttaa suunnitteluasiantuntija John Teel, joka käy uudella videollaan läpi 21 yleisintä ja vakavinta virhettä, joita hän näkee toistuvasti sadoissa tekemissään suunnittelukatselmoinneissa.

Vakava haavoittuvuus React- ja Next.js-sovelluksissa – päivitä heti

React-tiimi on julkaissut erittäin vakavan tietoturvahaavoittuvuuden, joka koskee React Server Components -arkkitehtuuria sekä sen varaan rakentuvia kehitysalustoja, erityisesti Next.js-sovelluksia. Haavoittuvuus mahdollistaa täysin autentikoimattoman etähyökkäyksen, jonka avulla hyökkääjä voi suorittaa mielivaltaista koodia palvelimella.

Autojen sisävalaistukseen mullistava ratkaisu

DP Patterning ja ams OSRAM ovat esitelleet uudenlaisen ratkaisun, joka voi muuttaa autojen sisävalaistuksen suunnittelua merkittävästi. Yhtiöiden kehittämä konsepti esiteltiin ensi kertaa marraskuussa Productronica-messuilla Münchenissä.

Lataa laitteet auringon- tai sisävalosta

Belgialainen e-peas on esitellyt AEM15820-energiankeruupiirin, joka on suunniteltu hyödyntämään hybridiaurinkokennojen koko tehoalueen. Hybridikennojen etuna on kyky tuottaa energiaa sekä sisävalaistuksessa mikrowattitasolla että suorassa auringonpaisteessa useiden wattien teholla. Uusi PMIC pystyy käsittelemään tämän koko skaalan, mikä avaa tien käytännössä itseään lataaville kuluttaja- ja IoT-laitteille.

Tria tuo tehoa verkon reunalle DragonWing-moduuleilla

Avnetin entinen sulatuettujen ryhmä eli nykyinen Tria Technologies tuo ensimmäiset Qualcomm Dragonwing IQ-6-sarjaan perustuvat moduulit markkinoille. Uudet SM2S-IQ615- ja OSM-LF-IQ615-moduulit tarjoavat teollisuusluokan suorituskykyä ja modernia AI-kiihdytystä SMARC- ja OSM-moduuleina.

Suomalaisille kvanttialgoritmeille kysyntää maailmalla

Suomalainen kvanttialgoritmiyhtiö QMill laajentaa kvanttialgoritmitutkimuksen kansainvälistä yhteistyötä merkittävällä tavalla. Yhtiö on solminut strategisen tutkimussopimuksen kanadalaisen École de technologie supérieure (ÉTS) -yliopiston kanssa edistääkseen kvanttilaskennan käytännön sovelluksia ja validoidakseen algoritmeja todellisia teollisia haasteita varten. Sopimus vahvistaa entisestään suomalaisosaamisen kysyntää globaaleissa kvanttikeskuksissa.

Kiinnostavatko humanoidirobotit? Ensi viikolla ilmainen webinaari

Mitä pitää ottaa huomioon, jos suunnittelee ihmisen tavoin käyttäytyvää humanoidirobottia? Miten signaalit reititetään? Miten syötetään sähköä? Miten liittimet valitaan, jotta laite kestää siihen kohdistuvat rasitukset?

Minikokoinen kondensaattori yli kilovoltin SiC-sovelluksiin

Murata on esitellyt maailman ensimmäisen 15 nF:n ja 1,25 kilovoltin jännitekestolla varustetun C0G-tyypin monikerroskeramiikkakondensaattorin (MLCC), joka on pakattu poikkeuksellisen pieneen 1210-kokoluokkaan (3,2 × 2,5 mm). Uutuus vastaa suoraan SiC-MOSFET-tekniikan kasvavaan tarpeeseen, jossa korkeajännitteiset ja erittäin vähän häviävät komponentit ovat välttämättömiä resonanssi- ja snubber-piireissä.

LUMI-tekoälyhubi avautui Otaniemessä

LUMI-tekoälytehtaan hubiprojektin päällikkö Eeva Harjula (CSC) korostaa, että uusi Otaniemen hubi tuo tekoälyn mahdollisuudet konkreettisesti lähemmäs opiskelijoita, startup-yrityksiä ja pk-sektoria. - Tavoitteena on luoda kohtaamispaikka, jossa syntyy uusia ideoita ja yhteistyötä suomalaisen tutkimuksen, elinkeinoelämän ja yhteiskunnan hyväksi. Otaniemen hubi toimii LUMI-tekoälytehtaan päähubina” Harjula sanoo.

Wi-Fi 8 -piirien testaaminen voi alkaa

Rohde & Schwarz ja Broadcom ovat ottaneet ratkaisevan askeleen kohti seuraavan sukupolven Wi-Fi 8 -laitteita. Broadcom on validoinut R&S:n uuden CMP180-radiotesterin Wi-Fi 8 -piirien kehitys- ja tuotantotestaukseen, mikä tarkoittaa, että ensimmäisiä 802.11bn-siruja voidaan alkaa testata ja optimoida jo ennen standardin lopullista valmistumista.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • Valmis algoritmi ihmisten tunnistamiseen tulee anturin mukana
  • Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä
  • Microchipin uusi piiri toimii älykkäänä virran vahtikoirana
  • Sähkömittareista tuttu radio laajenee uusille alueille
  • Tekoälyrobotteja nopeasti Linuxilla

NEW PRODUCTS

  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
  • Kilowatti tehoa irti USB-tikun kokoisesta muuntimesta
  • Älykäs sulake tekee sähköautoista turvallisempia
 
 

Section Tapet