Bioimpedanssimittaus on monipuolinen, nopea, noninvasiivinen ja edullinen työkalu ihmiskehon koostumuksen arviointiin ja monien sairauksien diagnosointiin. Analog Devicesin AD5940:n kaltaisten piirien ansiosta voidaan rakentaa pienikokoisia, suorituskykyisiä ja vähän virtaa kuluttavia bioimpedanssianalysaattoreita, jotka toimivat jopa paristoilla, kertoo Analog Devices ETNdigi-lehden artikkelissaan.

Biologisten kudosten sähköiset ominaisuudet luokitellaan aktiivisiksi tai passiivisiksi sähkön lähteestä riippuen. Puhumme aktiivisesta vasteesta, kun biologiset kudokset tuottavat sähköä solujen sisällä olevien ionien vuoksi. Näitä sähköisiä signaaleja kutsutaan biopotentiaaliksi, ja tunnetuimpia esimerkkejä löytyy elektrokardiografiasta (EKG) ja elektroenkefalografiasta (EEG). Vaste on passiivinen, kun biologinen kudos reagoi ulkoiseen sähköiseen ärsykkeeseen, kuten generaattorin virtaan tai jännitteeseen. Tätä kutsutaan bioimpedanssiksi.

BIOSÄHKÖINEN IMPEDANSSIANALYYSI

Biosähköinen impedanssianalyysi on edullinen, noninvasiivinen tekniikka ihmiskehon koostumuksen mittaamiseksi ja kliinisten tilojen arvioimiseksi. Biologinen impedanssi on monimutkainen suure, joka muodostuu resistiivisestä arvosta R (todellinen osa), pääasiassa kehon veden kokonaismäärästä ja reaktiivisesta arvosta Xc (kuvitteellinen osa), joka tulee solukalvon luomasta kapasitanssista. Impedanssi voidaan myös esittää vektorina moduulilla | Z | ja vaihekulmalla φ. Vaihekulmalla on keskeinen rooli kehon koostumuksen määrittämisessä.

Johtimen resistanssi R (johtimen poikkipinta-ala = S ja pituus = I) ja tasaisen yhdensuuntaisen levykondensaattorin kapasitanssi C (jonka pinta- ala = S etäisyydellä d) lasketaan seuraavasti:

Kuten yhtälöistä 4 ja 5 voidaan nähdä, resistanssi ja kapasitanssi riippuvat geometrisistä parametreista (pituus, etäisyys ja pinta-ala), mikä tarkoittaa, että ne ovat yhteydessä valittuun mittausjärjestelmään.

Geometriset parametrit riippuvat myös fyysisistä parametreista (resistiivisyys ρ ja dielektrinen vakio ε), jotka liittyvät läheisesti mitattavan materiaalin tyyppiin (tässä tapauksessa biologiseen kudokseen).

Kuva 1 esittää bioimpedanssin ja sen mittaamiseen käytetyn laitteen yksinkertaistettua sähkömallia. RE ottaa huomioon solunulkoisten nesteiden resistanssin, RI symboloi solunsisäisten nesteiden resistenssiä ja Cm on solukalvon kapasitanssi. Yhteys instrumentin ja ihmiskehon välillä tapahtuu iholle asetettujen elektrodien kautta. Laite syöttää viritys- jännitteen elektrodeille ja mittaa tuotetun virran. Virityssignaali generoidaan anturille lähtevän virran ohjaimeen liitetyllä DA- muuntimella. Muunnin ohjelmoidaan mikro- ohjaimella signaalin amplitudin ja taajuuden asettamiseksi. Virtamittaukseen käytetään transimpedanssivahvistinta (TIA), joka on liitetty korkearesoluutioiseen AD- muuntimeen tarkkoja mittauksia varten. Saatu data prosessoidaan järjestelmän mikro-ohjaimessa, joka poimii analyysiin tarvittavat tiedot.

Bioimpedanssimittauksia varten ihmiskeho on jaettu viiteen segmenttiin: kaksi yläraajaa, kaksi alaraajaa ja vartalo. Tämä erottelu on tärkeä käytetyn mittausmenetelmän ymmärtämiseksi. Yleisimpiä mittausmenetelmiä ovat kädestä-jalkaan, jalasta-jalkaan ja kädestä-käteen.

testissä on otettava huomioon useita tekijöitä, mukaan lukien antropometriset parametrit eli pituus, paino, ihon paksuus ja rakenne. Muita tekijöitä ovat sukupuoli, ikä, etninen ryhmä ja ennen kaikkea potilaan terveydentila eli esimerkiksi aliravitsemus tai kuivuminen. Jos näitä tekijöitä ei oteta huomioon, testitulokset voivat vääristyä. Mittausten tulkinta perustuu tilastotietoihin ja yhtälöihin, joissa nämä eri tekijät otetaan huomioon.

KEHON KOOSTUMUS

Kehon koostumusta tutkittaessa viittaamme kolmeosaiseen malliin, joka sisältää seuraavat:

  • Rasvan massa
    • Solun massa
    • Solunulkoinen massa

Kuva 2 esittää näitä käsitteitä lähtien kaksiosaisen mallin tunnetuista termeistä vähärasvainen massa (rasvaton massa) ja rasvamassa. Rasvamassa jakaantuu olennaiseen rasvaan ja varastointirasvaan. Vähärasvainen massa jakautuu kehon solumassaan, joka muodostuu proteiini- massasta ja solunsisäisestä vedestä, ja solunulkoiseen massaan, joka puolestaan sisältää solunulkoisen veden ja luumassan. Viimeinen parametri, joka on olennainen nesteytystarpeen määrittämiseksi, on kehon kokonaisvesimäärä, joka saadaan solunsisäisen ja solunulkoisen veden summana.

Sähköisen mittaamisen kannalta solunsisäiset ja solunulkoiset elektrolyyttiset nesteet käyttäytyvät kuten hyvät johtimet, kun taas rasva ja luukudos ovat huonoja johtimia.

ERI MITTAUSTEKNIIKAT

Yleisimmät tekniikat bioimpedanssin mittaamiseksi eroavat herätesignaalin taajuuden käytössä. Yksin- kertaisimmat instrumentit perustuvat mittauksiin kiinteällä taajuudella (yksitaajuinen biosähköinen impedanssianalyysi eli SF-BIA). Jotkut käyttävät useamman taajuuden järjestelmää, jolloin puhutaan monitaajuisesta biosähköisestä impedanssianalyysistä eli MF-BIA:sta. Kaikkein hienostuneimmat instrumentit tekevät useiden taajuuksien spektroskopiaa (bioimpedanssi-spektroskopia eli BIS). Tulosten arviointiin on myös erilaisia tekniikoita, joista biosähköinen impedanssivektorianalyysi ja reaaliaikainen analyysi ovat tärkeimmät.

SF-BIA-mittauksessa kehoon syötetään taajuudeltaan 50 hertsin virtaa. Toiminta perustuu käänteisesti verrannolliseen suhteeseen mitatun impedanssin ja kehon kokonaisvesimäärän (TBW) välillä. Tämä impedanssin johtava osa koostuu vuoroin solunsisäisestä, vuoroin solunulkoisesta vedestä. Tämä tekniikka tarjoaa hyviä tuloksia normaaleissa nesteytystarpeissa. Se ei toimi tilanteissa, joissa nesteytyksen määrä vaihtelee nopeasti, koska menetelmän kyky mitata solunsisäisen veden muutoksia on rajallinen.

MF-BIA-tekniikka ylittää SF-BIA- mittauksen rajoitukset suorittamalla mittauksen matalilla ja korkeilla taajuuksilla. Matalataajuusmittaus mahdollistaa solunulkoisen veden tarkemman arvioinnin, kun taas korkeilla taajuuksilla saadaan selville kehon kokonaisvesimäärä. Solunsisäinen vesimäärä voidaan määrittää näiden kahden lukeman välisellä erolla. Tämäkään tekniikka ei ole täydellinen, eikä sillä voida määrittää kehonnesteiden määrää sairastuneilla vanhuksilla.

Bioimpedanssispektrokopia eli BIS perustuu impedanssin mittaamiseen nollataajuudella, joka kuvan 1 mallin mukaan on solunulkoisten nesteiden aiheuttama vastus RE, ja äärettömällä taajuudella (RE rinnan RI:n kanssa). Näissä kahdessa taajuuden ääripäässä solukalvosta johtuva kapasitanssi käyttäytyy kuin avoin piiri tai oikosulku.

Keskitaajuusmittaukset tuottavat tietoa kapasitanssista. BIS-mittaus tarjoaa yksityiskohtaisempia tietoja kuin muut tekniikat, mutta tässä tapauksessa mittaus vie enemmän aikaa.

Bioimpedanssivektorianalyysi (BIVA) on ihmisten terveyden määrittämisen tekniikka, joka perustuu bioimpedanssin absoluuttiseen mittaukseen. Sen kuvaajana käytetään vektoria, jossa vastusarvo esitetään x-akselilla ja kapasitiivisen reaktanssin arvo y- akselilla, ja molemmat arvot normalisoidaan potilaan pituuden suhteen. Menetelmä perustuu kolmen toleranssiellipsin muodostamiseen: 50%, 75% ja 95%. 50%:n toleranssiellipsi määrittelee sen osan väestöstä, jolla on keskimääräinen kehon koostumus. Ellipsin vaaka- akselilla oikealle asettuvat yksilöt, joilla on alhainen vähärasvaisen massan osuus, ja vasemmalle ne, joilla on korkea vähärasvaisen massan osuus. Pystysuora akseli kertoo nesteytyksen tason: keskimääräistä alhaisemmat tasot asettuvat ellipsin yläosaan ja korkeammat tason alaosaan.

AD5940 – JOUSTAVA JA TARKKA ANALOGIAETUPÄÄ

Analog Devicesilla on laaja tuote- valikoima impedanssianalyysejä varten, kuten ADuCM35x, joka on erittäin integroitu, erityisesti impedanssispektroskopiaan suunniteltu järjestelmäpiiri.

Äskettäin markkinoille tuotu AD5940 on erittäin tarkka, alhaisen virrankulutuksen analoginen etupää, joka on ihanteellinen kannettaviin sovelluksiin. Bioimpedanssin ja ihonjohtavuuden mittaamiseen suunniteltu AD5940 koostuu kahdesta herätesilmukasta ja yhteisestä mittauskanavasta.

Ensimmäinen herätesilmukka pystyy tuottamaan signaaleja 200 hertsin maksimitaajuudella ja se voidaan konfiguroida potentiostaatiksi erityyppisten sähkökemiallisten solujen mittaamiseen. Peruskomponentit ovat kaksilähtöinen DA- muunnin, herätesignaalin tuottava tarkkuusvahvistin ja transimpedanssi-vahvistin virran mittausta varten. Alhaisilla taajuuksilla tämä silmukka kuluttaa vähän virtaa ja siksi sitä kutsutaan myös pieni- tehoiseksi silmukaksi.

Toisella silmukalla on samanlainen kokoonpano, mutta se pystyy toimimaan jopa 200 kilohertsin signaaleilla, mistä syystä sitä kutsutaan nopeaksi silmukaksi. Piiri on varustettu keruukanavalla, jossa on 16-bittinen, 800 kilonäytettä sekunnissa (ksps) ottava SAR- tyyppinen AD-muunnin ja analoginen signaalin prosessointiketju ylävirtaan muuntimesta, joka sisältää puskurin, ohjelmoitavan vahvistimen ja ohjelmoitavan antialiasointisuotimen. Arkkitehtuurin täydentää kytkentä- matriisimultiplekseri, joka sallii useiden sisäisistä tai ulkoisista lähteistä tulevien signaalien kytkemisen AD-muuntimeen. Tällä tavoin voidaan ensisijaisen impedanssi-mittaustoiminnon lisäksi suorittaa tarkka järjestelmädiagnostiikka laitteen täydellisen toiminnan varmistamiseksi.

Kuva 4 esittää AD5940-piirin kytkennän ihmiskehon absoluuttisen impedanssin mittaamiseksi nelijohtimisella konfiguraatiolla. Tämän tyyppisissä mittauksissa käytetään korkeataajuista silmukkaa, jossa ohjelmoitava vaihtojännite- generaattori tarjoaa herätesignaalin. Toinen generaattori syöttää yhteis- muotoisen (common mode) jännitteen, mikä on hyödyllinen oikean mittauksen suorittamiseksi. Kehon impedanssista riippuva virta mitataan transimpedanssi- vahvistimella ja muunnetaan 16- bittisellä ADC:llä. Järjestelmä pystyy mittaamaan jopa 200 kilohertsin taajuuteen asti ja tarjoaa 100 dB:n signaali-kohinasuhteen 50 kilohertsissä. Digitaalinen data lähetetään laitteistokiihdyttimelle haluttujen määrien poimimiseksi. Näin saadaan selville sekä impedanssin todellinen että sen kuvitteellinen osa.

Lääketieteellisenä laitteena bioimpedanssianalysaattorin on oltava IEC 60601 -standardin mukainen. Tämä standardi asettaa rajat jännitteille ja virroille, joita voidaan käyttää ihmiskehoon. Tästä syystä maksimivirtaa rajoitetaan resistanssilla Rlimit ja neljä kytkentäkondensaattoria (CisoX) estävät tasavirtakomponentin kytkemisen ihmiskehoon.

JOHTOPÄÄTÖS

Bioimpedanssimittaus on monipuolinen, nopea, noninvasiivinen ja edullinen työkalu ihmiskehon koostumuksen arviointiin ja tietyntyyppisten sairauksien diagnosointiin. Nykyinen tekniikka mahdollistaa AD5940:n kaltaisten piirien ansiosta pienikokoisten, suorituskykyisten ja vähän virtaa kuluttavien bioimpedanssi- analysaattoreiden rakentamisen, jotka voivat olla akkukäyttöisiä. AD5940:n pitkälle viety integrointi, pieni koko ja alhainen tehonkulutus tekevät siitä myös erityisen sopivan piirin puettaviin laitteisiin.

ETNtv

Watch ECF videos

TekoÀlyn avulla robotteja voidaan ohjata puheella

ETN - Technical article

Generatiivisen tekoälyn vallankumous, joka tuo chatbotit asiakaspalveluun ja mahdollistaa älykaiuttimien kaltaiset laitteet, on vasta alkua. Sama teknologia, joka ymmärtää ihmisten puhetta, siirtyy nyt robotiikkaan, missä se auttaa kehittämään algoritmeja robottien liikkeiden ohjaamiseen ja politiikkojen toteuttamiseen tärkeiden tehtävien suorittamiseksi.

Lue lisÀÀ...

SOM-ratkaisut ovat lÀÀketieteellisen elektroniikan luotettava tulevaisuus

Lääketieteellinen elektroniikka on yksi nopeimmin kasvavista teollisuudenaloista. Väestön ikääntyminen, erityisesti länsimaissa, ja terveydenhuollon teknologioiden jatkuva kehitys pitävät yllä kovaa kysyntää ja ohjaavat alan tutkimus- ja tuotekehitystä, kirjoittaa Digi Internationalin OEM-ratkaisuista Euroopassa vastaava johtaja Ronald Singh.

Lue lisÀÀ...

LATEST NEWS

NEW PRODUCTS

 

NEWSFLASH

 SPONSORS

 

Etteplan supports customers cross industries in digitalizing their business from requirement specifications to solution development and implementation. With over 30 years of experience, Etteplan has the needed expertise to develop a wide range of industrial applications, from large established companies to start-ups. We deliver complete turn-key solutions containing cross-discipline know-how.

 

CN Rood offers technical solutions in the field of testing and measurement. We aim to remain leaders in that regard. Our customers are often not looking for a product, but for a solution, and we all have the drive to work on that solution. What we love to do most is to continually work on the latest developments in the field of testing and measuring equipment. Now and in the future.

 


EBV Elektronik was founded in 1969 and is one of the leading specialists in European semiconductor distribution. This success is based on the underlying company philosophy, which was developed a long time ago and which still applies today: operational excellence, flexibility, reliability and execution – with the goal of achieving the highest degree of customer satisfaction.

 

Tria is a world leader in the design and manufacture of embedded computing for OEMs. We offer a broad range of off-the-shelf modules to fully customized systems built for our customers. With a global footprint and deep in-house expertise, we support innovators from design to delivery.

congatec is a rapidly growing technology company focusing on embedded and edge computing products and services. The high-performance computer modules are used in a wide range of applications and devices in industrial automation, medical technology, robotics, telecommunications and many other verticals.

 

Mespek was founded in 1989. Our main products are embedded electronic modules, industrial PCs with peripherals, KVM and server management products, as well as wireless solutions for IoT applications.

 

Since 1985, Digi International Inc. (Digi) has been a pioneer in wireless communication, forging the future for connected devices and responding to the needs of the people and enterprises that use them.

 

CVG Convergens is an ICT services company specialized in embedded systems, smart connected products and ICT systems and processes for SME businesses. Our mission is to help our clients, our team, and the society to improve and thrive by providing reliable and sustainable solutions, services, and products by creative and efficient application of technology.

 

BCC Solutions Oy is a Finnish company that, in addition to expert services, offers comprehensive equipment solutions for data transfer and telecommunication networks, as well as their analysis, testing and measurement. We broadly represent the industry's leading brands.

 

Acal BFi has trusted expertise in advanced electronics for 50 years. If you’re in search of a trusted technology solutions partner, your search ends here. Our extensive knowledge, cutting-edge portfolio, and worldwide capabilities are at your service to bring the future into reality.

 





ECF template