ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Ajastus menee uusiksi pienissä laitteissa

SiTimen Titan-alustan MEMS-resonaattorit mullistavat 4 miljardin dollarin resonointikomponenttien markkinan. Ne ovat jopa seitsemän kertaa kvartsia pienempiä, mutta samalla kestävämpiä, energiatehokkaampia ja helpompia integroida. Älykelloista lääkinnällisiin implantteihin, IoT-laitteisiin ja Edge AI -sovelluksiin Titan avaa laitevalmistajille uusia mahdollisuuksia suunnitella aiempaa pienempiä, älykkäämpiä ja luotettavampia tuotteita.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Tehosta tuottavuutta anturinsisäisellä tekoälyllä

Tietoja
Kirjoittanut Veijo Ojanperä
Julkaistu: 17.03.2025
  • Devices
  • Embedded
  • Artificial Intelligence

Virrankulutuksen optimointi on ratkaisevan tärkeää akkukäyttöisille laitteille. ST MEMS -antureiden Machine Learning Core (MLC) mahdollistaa päätöspuuluokittelun suoraan anturin sisällä, mikä vähentää mikro-ohjaimen kuormitusta ja pidentää akun käyttöikää. ST:n MEMS Studio ja AIoT Craft yksinkertaistavat tekoälypohjaista reunalaskentaa älykkäisiin ja energiatehokkaisiin sovelluksiin.

Tietyt ST MEMS -anturit on varustettu Machine Learning Core (MLC) -ytimellä, joka voi käsitellä syöttödataa (pääasiassa kiihtyvyysantureista, mutta myös gyroskoopeista ja mahdollisesti ulkoisista I2C-liitännän kautta luettavista lähteistä) ja tehdä ennusteita esikoulutetun päätöspuumallin avulla.

Päätöspuumallin suorittaminen suoraan anturin sisällä mahdollistaa tiettyjen tapahtumien tunnistamisen liikeprofiilien perusteella erittäin alhaisella virrankulutuksella. Tämä lähestymistapa vähentää mikro-ohjaimen kuormitusta, alentaa laitteen kokonaisvirrankulutusta ja pidentää akun käyttöikää.

ST tarjoaa MEMS Studio- ja AIoT Craft -työkalut, jotka auttavat käyttäjiä luomaan päätöspuihin perustuvia koneoppimismalleja MLC-yhteensopiville antureille. Mallin koulutusprosessi on suunniteltu helpoksi, joten myös käyttäjät, joilla on vähän tai ei lainkaan data-analyysin kokemusta, voivat hyödyntää sitä automaation ansiosta.

Mikä on päätöspuu?

Päätöspuu on valvottu koneoppimisalgoritmi, joka käyttää binääripuu-rakennetta. ST MEMS -älyantureissa päätöspuu koostuu kahdentyyppisistä solmuista: sisäsolmuista ja ulkoisista solmuista, sekä niitä yhdistävistä oksista. Sisäsolmut sisältävät "if-then-else" -ehtoja, joiden perusteella tiedon kulku etenee kohti lopullista päätöstä.

 

Artikkeli on kokonaisuudessan luettavissa uudesta ETNddigi-lehdestä täällä. 

 

BOOST EFFICIENCY WITH IN-SENSOR AI

Optimizing power consumption is crucial for battery-powered devices. With ST MEMS sensors' Machine Learning Core (MLC), decision-tree classification runs directly inside the sensor, reducing microcontroller workload and extending battery life. Discover how ST’s MEMS Studio and AIoT Craft simplify AI-powered edge computing for smarter, energy-efficient applications.

Certain ST MEMS sensors are equipped with a Machine Learning Core (MLC). This core can process input data (mostly from accelerometers, but also from gyroscopes and eventually, external data readable through the I2C interface) and make predictions using a pre-trained decision tree model. The decision tree model running directly inside the sensor can detect specific events from motion patterns with extremely low power consumption. This approach offloads the microcontroller, reduces the overall power consumption of the device, and prolongs the device’s battery runtime.

ST makes training of a decision tree more accessible through its MEMS Studio and ST AIoT Craft applications. They both help users create machine-learning models based on decision trees for MLC-enabled sensors. The model training process is also accessible to users with little or no data science experience, thanks to the automation of most of the process.

WHAT IS A DECISION TREE?

A decision tree is a supervised learning algorithm that uses a binary tree-like structure, which is also utilized in ST MEMS smart sensors. The decision tree consists of two types of nodes: inner nodes and outer nodes, along with branches. Inner nodes contain "if-then-else" conditions where a feature calculated from input data is compared against a threshold. A specific type of inner node is the root node, which carries the initial condition to evaluate and does not have any incoming branches. Branches represent the result of the inner node (true or false) and select the next node to be evaluated. Outer nodes, also called leaf nodes, do not have any outgoing branches and contain the prediction / result.

Decision trees inside ST MEMS smart sensors can be used for a wide range of applications, including activity/fitness recognition, asset tracking, or vibration monitoring.

HOW IS A DECISION-TREE MODEL TRAINED?

To create a decision tree, we need to:

 

  1. Define Classes: Identify the set of classes we want to predict.
  2. Data Collection and Labeling: Gather and tag data for each class with corresponding labels, as supervised learning requires labeled data for training.
  3. Data Analysis: Analyze the collected data to select useful signal features and determine the appropriate window length. Optionally, digital filters can be included.
  4. Feature Calculation: Calculate signal features from a specific number of samples determined by the window length. These features can include mean, variance, zero-crossing, minimum, maximum, and so on.
  5. Model Training: Perform model training on the selected signal features calculated from the input data.

 

Both MEMS Studio and ST AIoT Craft simplify the model training process, reducing the development time. The MEMS Studio is a standalone desktop application that handles the training process locally on the user’s computer. Moreover, the application includes sensor configuration and evaluation, offline data analysis, advanced embedded features, and embedded AI development. On the other hand, the ST AIoT Craft is a web-based tool focusing on AI and IoT, where all the processing is running in the cloud, allowing more flexibility.

HERE'S HOW BOTH APPLICATIONS HELP:
  1. Development Board Support: The tools support several ST development boards with ready-to-use firmware for data logging and model evaluation.
  2. Data Logging and Labeling: When using the ST AIoT Craft, data logging and labeling can be done using a web GUI or a companion mobile application. Data can also be imported in CSV format, for example, if logging was done using a different application like the MEMS Studio. In the MEMS Studio, it is possible to import data in CSV format, with data logging either by the MEMS Studio or a different application.
  3. Data Parsing and Labeling: the ST AIoT Craft includes utilities to help parse and label large data files. Users can visualize data in a graph, select sections, and assign corresponding labels to motion patterns. The labeled dataset can then be split into smaller logs with assigned labels, ready for training. The MEMS Studio has a separate data manipulation tool with the same capabilities.
  4. Automatic Analysis: The ST AIoT Craft will automatically analyze input data (selected subset of available data), select appropriate filters, features and window length. In the MEMS Studio, selected data is imported into the tool, which can be either analyzed automatically or user can manually select filters, features, and window length. It is also possible to let the tool analyze the data and then manually finetune the settings.
  5. Model Training and Evaluation: The tools train a decision tree and generate a sensor configuration. The trained model can be easily evaluated using selected development boards through the web GUI or a companion mobile application in case of the ST AIoT Craft, and directly in the application when the MEMS Studio is used.

 

Decision trees inside ST MEMS smart sensors can be used for wide range of applications.

When using the ST AIoT Craft, there is no need to install any software on your PC, as your datasets and projects are stored in the cloud. This provides more flexibility when working on your application and allows an IoT system to be set up. A preconfigured Linux gateway image, running on Raspberry Pi hardware, can be downloaded from the ST AIoT Craft website. Example projects are available for users to test the capabilities of the machine learning core.

Decision tree training flow

If you want to experience the ST AIoT Craft firsthand by either trying a project example or creating your own decision tree, please visit staiotcraft.st.com. In case a local training is preferred or you are looking for a complete all-in-one application for sensor development, get the MEMS Studio at st.com/mems-studio. You can learn more about the sensor portfolio with machine learning core capabilities and the core itself, including application notes, on st.com/mlc.

The ST AIoT Craft and MEMS Studio are part of the ST Edge AI suite, which is a collection of software tools for integrating AI features into embedded systems – edge AI. It supports a wide range of ST products, including MEMS smart sensors, and provides resources for data handling, AI model optimization, and deployment. More information and available tools and software can be found on st.com/st-edge-ai-suite.

 

MORE NEWS

Microchipin uusi piiri toimii älykkäänä virran vahtikoirana

Microchip on esitellyt kaksi digitaalista tehonvalvontapiiriä, jotka mittaavat kannettavien ja energiarajoitteisten laitteiden virrankulutusta kuluttamatta itse käytännössä lainkaan tehoa. Uudet PAC1711- ja PAC1811-piirit toimivat itsenäisinä, MCU:sta riippumattomina ”älykkäinä virran vahtikoirina”, jotka herättävät prosessorin vasta, kun järjestelmässä tapahtuu jotakin merkittävää.

Sähkömittareista tuttu radio laajenee uusille alueille

STMicroelectronics laajentaa tunnetun ST87M01-NB-IoT-radiomoduulinsa käyttökohteita älymittareista kohti yleisiä IoT-ratkaisuja. Yhtiö on esitellyt kaksi uutta versiota moduulista sekä päivitetyn kehitysekosysteemin, joiden avulla kehittäjät voivat tuoda kapeakaistaisen NB-IoT-yhteyden nopeasti osaksi logistiikan, teollisuuden, energiaverkkojen ja kuluttajalaitteiden sovelluksia.

Tekoälyrobotteja nopeasti Linuxilla

Avocado-käyttöjärjestelmäänsä sulautettujen laitteiden valmistajille kauppaava Peridio esitteli Embedded World North America -messuilla uuden Jetson-pohjaisen tekoälyä hyödyntävän robottidemon. Demo havainnollisti, miten sen Avocado OS -käyttöjärjestelmä ja laitehallinta-alusta lyhentävät sulautettujen AI-laitteiden tuotantovaiheeseen siirtymisen jopa kuukausista päiviin.

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

Sähköinen liikenne on siirtynyt uuteen aikakauteen sekä maailmalla että Euroopassa. Gartnerin tuoreen ennusteen mukaan maailman teillä liikkuu ensi vuonna yli 116 miljoonaa sähköajoneuvoa, kun taas TechGaged Research raportoi, että polttomoottorit ovat nyt virallisesti vähemmistössä Euroopan unionissa.

Winbond vie teollisuuden DDR4-muistit uudelle tasolle

Winbond on esitellyt uuden 8 gigabitin DDR4-muistin, joka nostaa teollisuus- ja sulautettujen järjestelmien perinteisen DDR4-teknologian aivan uudelle suorituskyky- ja tehokkuustasolle. Yhtiö valmistaa uutuuden omalla 16 nanometrin prosessillaan, mikä tuo pienemmän sirukoon, alhaisemman virrankulutuksen ja paremman signaalieheyden – ominaisuuksia, joita teollisuus edellyttää pitkän elinkaaren laitteistoilta.

Ultravakaa kellosignaali auttaa tunnistamaan GPS-häirinnän

GNSS-vastaanottimien suojautuminen sekä häirintää että harhautusta vastaan paranee merkittävästi, kun vastaanotin käyttää tavallista kvartsikelloa tarkempaa ja stabiilimpaa referenssikelloa. Tähän tarpeeseen vastaa SiTimen uusi Endura Super-TCXO ENDR-TTT, joka on suunniteltu erityisesti ilmailun, puolustuksen ja teollisuuden PNT-sovelluksiin.

Tämä vuosi kuuluu iPhonelle, ensi vuonna koko markkina kutistuu

Applen vahva vuosi nostaa älypuhelinmarkkinat takaisin kasvuun, mutta edessä siintää jälleen notkahdus. IDC:n tuoreiden lukujen mukaan maailmanlaajuiset älypuhelintoimitukset kasvavat vuonna 2025 yhteensä 1,5 prosenttia 1,25 miljardiin laitteeseen. Suurin selittävä tekijä on Applen ennätysvuosi: iPhone 17 -sarjan vetämä kysyntä nostaa yhtiön toimitukset 247,4 miljoonaan laitteeseen, mikä merkitsee 6,1 prosentin vuosikasvua.

Tässä pahimmat virheet piirikortin suunnittelussa

PCB-suunnittelun virheet eivät aiheuta vain pieniä häiriöitä. Ne voivat rikkoa toiminnallisuuden, pysäyttää sertifioinnit, syödä akut tyhjiksi, heikentää luotettavuutta tai jopa tehdä tuotteesta mahdottoman valmistaa. Näin muistuttaa suunnitteluasiantuntija John Teel, joka käy uudella videollaan läpi 21 yleisintä ja vakavinta virhettä, joita hän näkee toistuvasti sadoissa tekemissään suunnittelukatselmoinneissa.

Vakava haavoittuvuus React- ja Next.js-sovelluksissa – päivitä heti

React-tiimi on julkaissut erittäin vakavan tietoturvahaavoittuvuuden, joka koskee React Server Components -arkkitehtuuria sekä sen varaan rakentuvia kehitysalustoja, erityisesti Next.js-sovelluksia. Haavoittuvuus mahdollistaa täysin autentikoimattoman etähyökkäyksen, jonka avulla hyökkääjä voi suorittaa mielivaltaista koodia palvelimella.

Autojen sisävalaistukseen mullistava ratkaisu

DP Patterning ja ams OSRAM ovat esitelleet uudenlaisen ratkaisun, joka voi muuttaa autojen sisävalaistuksen suunnittelua merkittävästi. Yhtiöiden kehittämä konsepti esiteltiin ensi kertaa marraskuussa Productronica-messuilla Münchenissä.

Lataa laitteet auringon- tai sisävalosta

Belgialainen e-peas on esitellyt AEM15820-energiankeruupiirin, joka on suunniteltu hyödyntämään hybridiaurinkokennojen koko tehoalueen. Hybridikennojen etuna on kyky tuottaa energiaa sekä sisävalaistuksessa mikrowattitasolla että suorassa auringonpaisteessa useiden wattien teholla. Uusi PMIC pystyy käsittelemään tämän koko skaalan, mikä avaa tien käytännössä itseään lataaville kuluttaja- ja IoT-laitteille.

Tria tuo tehoa verkon reunalle DragonWing-moduuleilla

Avnetin entinen sulatuettujen ryhmä eli nykyinen Tria Technologies tuo ensimmäiset Qualcomm Dragonwing IQ-6-sarjaan perustuvat moduulit markkinoille. Uudet SM2S-IQ615- ja OSM-LF-IQ615-moduulit tarjoavat teollisuusluokan suorituskykyä ja modernia AI-kiihdytystä SMARC- ja OSM-moduuleina.

Suomalaisille kvanttialgoritmeille kysyntää maailmalla

Suomalainen kvanttialgoritmiyhtiö QMill laajentaa kvanttialgoritmitutkimuksen kansainvälistä yhteistyötä merkittävällä tavalla. Yhtiö on solminut strategisen tutkimussopimuksen kanadalaisen École de technologie supérieure (ÉTS) -yliopiston kanssa edistääkseen kvanttilaskennan käytännön sovelluksia ja validoidakseen algoritmeja todellisia teollisia haasteita varten. Sopimus vahvistaa entisestään suomalaisosaamisen kysyntää globaaleissa kvanttikeskuksissa.

Kiinnostavatko humanoidirobotit? Ensi viikolla ilmainen webinaari

Mitä pitää ottaa huomioon, jos suunnittelee ihmisen tavoin käyttäytyvää humanoidirobottia? Miten signaalit reititetään? Miten syötetään sähköä? Miten liittimet valitaan, jotta laite kestää siihen kohdistuvat rasitukset?

Minikokoinen kondensaattori yli kilovoltin SiC-sovelluksiin

Murata on esitellyt maailman ensimmäisen 15 nF:n ja 1,25 kilovoltin jännitekestolla varustetun C0G-tyypin monikerroskeramiikkakondensaattorin (MLCC), joka on pakattu poikkeuksellisen pieneen 1210-kokoluokkaan (3,2 × 2,5 mm). Uutuus vastaa suoraan SiC-MOSFET-tekniikan kasvavaan tarpeeseen, jossa korkeajännitteiset ja erittäin vähän häviävät komponentit ovat välttämättömiä resonanssi- ja snubber-piireissä.

LUMI-tekoälyhubi avautui Otaniemessä

LUMI-tekoälytehtaan hubiprojektin päällikkö Eeva Harjula (CSC) korostaa, että uusi Otaniemen hubi tuo tekoälyn mahdollisuudet konkreettisesti lähemmäs opiskelijoita, startup-yrityksiä ja pk-sektoria. - Tavoitteena on luoda kohtaamispaikka, jossa syntyy uusia ideoita ja yhteistyötä suomalaisen tutkimuksen, elinkeinoelämän ja yhteiskunnan hyväksi. Otaniemen hubi toimii LUMI-tekoälytehtaan päähubina” Harjula sanoo.

Wi-Fi 8 -piirien testaaminen voi alkaa

Rohde & Schwarz ja Broadcom ovat ottaneet ratkaisevan askeleen kohti seuraavan sukupolven Wi-Fi 8 -laitteita. Broadcom on validoinut R&S:n uuden CMP180-radiotesterin Wi-Fi 8 -piirien kehitys- ja tuotantotestaukseen, mikä tarkoittaa, että ensimmäisiä 802.11bn-siruja voidaan alkaa testata ja optimoida jo ennen standardin lopullista valmistumista.

Androidissa paikattiin kaksi vakavaa haavoittuvuutta

Google on julkaissut joulukuun Android-turvapäivitykset, jotka paikkaavat yhteensä yli sata haavoittuvuutta eri järjestelmäkomponenteissa. Merkittävimpiä ovat kaksi vakavaa zero-day-haavoittuvuutta, joiden Google arvioi olleen jo kohdennetun hyväksikäytön kohteena.

Lue tämä, jos suunnittelet sähköautojen tehoelektroniikkaa

Rutronik ja Bosch ovat julkaisseet uuden teknisen dokumentin, joka avaa poikkeuksellisen yksityiskohtaisesti seuraavan sukupolven piikarbiditekniikkaa. Paperi kattaa kaiken MOSFET-arkkitehtuurista kiekkokokoluokan muutokseen ja kosmisen säteilyn aiheuttamien vikojen hallintaan.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • Microchipin uusi piiri toimii älykkäänä virran vahtikoirana
  • Sähkömittareista tuttu radio laajenee uusille alueille
  • Tekoälyrobotteja nopeasti Linuxilla
  • Onko muisti GenAI:n pullonkaula?
  • Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

NEW PRODUCTS

  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
  • Kilowatti tehoa irti USB-tikun kokoisesta muuntimesta
  • Älykäs sulake tekee sähköautoista turvallisempia
 
 

Section Tapet