logotypen
 
 

IN FOCUS

Suojaa datasi kunnolla

SSD-levyt tarjoavat luontaisesti korkean luotettavuuden kaikentyyppisiin sovelluksiin, aina aloitustason kuluttajalaitteista kriittisiin järjestelmiin. Asianmukaiset tietosuojamekanismit voivat maksimoida levyn käyttöiän toteuttamalla ennaltaehkäiseviä toimenpiteitä tarpeen mukaan, kertoo Silicon Motion artikkelissaan.

Lue lisää...
" "

Jotta mikro-ohjainsovelluksissa päästäisiin haluttuihin lähtö- ja näyttöarvoihin, on tarpeen määrittää ensin ohjainpiirin kukin oheislaite vaiheittain. AD-muunnin, ajastimet sekä CCP- ja USART-yksiköt kannattaa konfiguroida ja toteuttaa askel kerrallaan ja liittää lopuksi yhteen.

Artikkelin kirjoittaja Mark Pallones toimii Microchip Technologyn MCU08-sovellustiimin vetäjänä. Hän tuli Microchipin palvelukseen vanhemmaksi sovellusinsinööriksi vuonna 2010. Nykyisessä tehtävässään Mark on toiminut syksystä 2013 lähtien. Aiemmin hän työskenteli esimerkiksi Emerson Network Powerilla suunnittelijana. Hänellä on elektroniikkainsinöörin tutkinto Manilan yliopistosta Filippiineillä.

Saadakseen kaiken irti modernista mikro-ohjaimesta on varmistettava, että ohjainpiiriin integroidut oheislaitteet on määritetty oikein. Yleensä tämä vaatii etenemistä askel kerrallaan, ennen kuin kokonaisuus voidaan liittää yhteen.

Tämän ennakointi on erityisen tärkeää siinä vaiheessa, kun mikro-ohjainta valitaan, koska kunkin ohjaintyypin oheislaitteet soveltuvat parhaiten tiettyjen sovellusten erityistarpeisiin. Ellei tässä vaiheessa ole huolellinen, oheislaitteiden tehokkuus saattaa jäädä vajavaiseksi.

Hyvänä esimerkkinä voi tarkastella Microchipin keskitason 8-bittisten mikro-ohjainten perheitä PIC16F7X ja PIC16C7X. Näistä ensin mainittu on flash-tyyppinen piiriperhe ja jälkimmäinen tyypiltään kertaohjelmoitava (OTP). Niiden sisältämiä oheislaitteita ovat ajastimet, sieppaus-vertaus-tyyppiset (CCP) PWM-lohkot, AD-muunnin sekä USART-lähetin-vastaanotin.

AD-muunnin

ADC-yksikkö muuntaa analogisen tulosignaalin vastaavaksi 8-bittiseksi digitaalikoodiksi. Sisäisen näytteenotto- ja pitopiirin lähtö toimii tuloliitäntänä AD-muuntimelle, joka generoi tuloksen peräkkäisapproksimaation avulla. Analogiseksi vertailujännitteeksi voidaan ohjelmallisesti valita ohjainpiirin positiivinen syöttöjännite (VDD) tai jännitetaso piirin Vref-nastassa. AD-muunninta on mahdollista käyttää myös silloin, kun ohjainpiiri on lepotilassa. AD-muunnoksen toteutus on esitetty lohkokaaviona kuvassa 1.

Kuva 1: AD-muunnoksen toteutuksen lohkokaavio.

AD-muunnin koostuu kolmesta rekisteristä: kaksi ohjausrekisteriä ADcon0 ja ADcon1 sekä tulosrekisteri ADres. ADcon0 ohjaa muuntimen toimintaa. Sen avulla valitaan muunnoksen kellotaajuus ja analoginen kanava. Se myös määrittää muunnostapahtuman aloituksen ja lopetuksen. ADcon1 puolestaan määrittää liitäntänastojen toiminnot. Mikro-ohjaimella on joko viisi tai kahdeksan I/O-nastaa, jotka voidaan määrittää analogisiksi tulolinjoiksi.

Kun ADcon0 ja ADcon1 on määritetty, ADcon0-rekisterin go/done-bitti asetetaan ykköseksi, mikä käynnistää muunnoksen ja asettaa rekisterin valvomaan, milloin muunnos on saatu tehdyksi. Kun AD-muunnos on saatu valmiiksi, tulos ladataan ADres-rekisteriin, go/done-bitti nollataan ja keskeytyslippubitti (ADif) asetetaan ykköseksi.

Muunnoksen tuloksena saatu näytekoodi luetaan ADres-rekisteristä ja siirretään USART- sekä CCP-moduuleihin (Capture-Compare PWM). Vaihtaminen kahden analogisen tulokanavan välillä tapahtuu muuttamalla CHS2:CHS0-bittien arvoja ADcon0-rekisterissä. Kuvassa 1 nähdään vain analogiatulot AN1 ja AN0, mutta mitkä tahansa analogisista tulokanavista voidaan valita CHS2:CHS0-bittien avulla.

Ajastimet

Mikro-ohjaimissa on kolme ajastinlohkoa: timer0, timer1 ja timer2. Kukin niistä voi tuottaa keskeytyksen, kun jokin tapahtuma, kuten ajastimen ylivuoto, on ilmennyt. Timer0 on yksinkertainen 8 bitin ajastin-laskuri. Timer1 puolestaan on 16-bittinen ajastin-laskuri, joka koostuu kahdesta 8-bittisestä rekisteristä, jotka ovat tyypiltään luettavia ja kirjoitettavia.

Timer2 on 8-bittinen ajastin, joka sisältää esiskaalaimen, jälkiskaalaimen ja periodirekisterin. Käyttämällä esi- ja jälkiskaalainta enimmäisasetuksin, ylivuotoaika on sama kuin 16-bittisellä ajastimella. Timer2 toimii pulssinleveysmodulaation aika-akselina, kun CCP-moduulia käytetään PWM-toimintamuodossa.

PWM-muodossa täytyy määrittää timer2:n periodirekisteri (PR2) ja ohjausrekisteri (T2con) sekä PIR1-rekisteri. PWM-lähtö koostuu aika-akselista (periodi) ja käyttöjaksosta eli ajasta, jonka lähtö pysyy ylhäällä (duty cycle). PWM-taajuus on periodin käänteisarvo. PWM-periodi määritetään kirjoittamalla PR2-rekisteriin.

CCP-tyyppiset PWM-moduulit

Ohjaimet sisältävät kaksi sieppaus-vertaus-tyyppistä PWM-yksikköä. Kumpikin niistä koostuu 16-bittisestä rekisteristä, jotka voivat toimia 16-bittisenä sieppausrekisterinä, 16-bittisenä vertausrekisterinä tai 10-bittisenä isäntä-renki-tyyppisenä PWM-käyttöjaksorekisterinä. Yksiköt ovat toiminnoiltaan muuten identtiset, mutta poikkeavat toisistaan erityistapahtumien liipaisumahdollisuuksien osalta.

USART-yksikkö

Ohjaimen USART-lohko eli yleiskäyttöinen synkroninen/asynkroninen lähetin-vastaanotin on toinen kahdesta sarjamuotoisesta I/O-lohkosta - toinen on SSP eli synkroninen sarjaportti. USART-yksikköä kutsutaan myös nimellä SCI (Serial Communications Interface). Sen voi konfiguroida täysdupleksimuotoon asynkroniseksi järjestelmäksi, joka kommunikoi ulkoisten oheislaitteiden kuten näyttöpäätteiden ja PC-koneiden kanssa. Vaihtoehtoisesti sen voi määrittää puolidupleksimuotoon synkroniseksi järjestelmäksi, joka voi kommunikoida esimerkiksi ulkoisten AD- ja DA-muunninpiirien tai sarja-EEPROM-piirien kanssa.

Esimerkkiohjelmassa yksikkö on konfiguroitu täysdupleksimuotoon asynkroniseksi järjestelmäksi kommunikoimaan PC:n kanssa. Tässä USART-lohkoa käytetään vain lähettämiseen. Toimintaan tarvittavat rekisterit ovat baudinopeuden generointirekisteri SPBRG, lähetystila- ja valvontarekisteri TXSTA, vastaanottotila- ja valvontarekisteri RCSTA sekä lähetysdatarekisteri TXREG.

8-bittinen SPBRG-rekisteri ohjaa vapaasti juoksevan 8-bittisen ajastimen jakson pituutta. Asynkronisessa toimintamuodossa yksi bitti ohjaa myös baudinopeutta. Synkronisessa muodossa tämä bitti ei ole käytössä.

Asynkroninen toimintamuoto ja 8-bittinen lähetysmuoto valitaan TXSTA-rekisterissä. Sen 'lähetys sallittu' -bitti TXen mahdollistaa datan lähettämisen. Lähetyksen siirtorekisterin statusbitti TRMT on ainoastaan luettava bitti, joka ilmaisee lähetyksen siirtorekisterin (TSR) tilan. Lähetyksen käynnistämiseksi on RCSTA-rekisterin SPen-bitti (serial port enable) ensin asetettava ykköseksi. Lähetysdatarekisteriin TXREG kirjoittaminen käynnistää sen jälkeen lähetyksen. Esimerkkikoodissa AD-muunnoksen tulos kopioidaan TXREG-rekisteriin. Arvo siirretään automaattisesti siirtorekisteriin TSR ja edelleen ulos ohjainpiirin RC6/TX-nastan kautta.

Oheislaitteiden liittäminen

Sen jälkeen kun ohjainpiirin kukin oheislaite on määritetty, ne pitää liittää vielä yhteen. Esimerkkiohjelman koodiin kuuluva silmukkasegmentti osoittaa, miten oheislaitteet on liitetty toisiinsa. Määritys- ja liitäntäprosessit on koottu kiinteän ohjelman vuokaavioon kuvassa 2.

Kuva 2: Kiinteän ohjelmiston vuokaavio.

Kaikki I/O-liitännät täytyy ensin alustaa. Myös sarjaliitännät pitää sallia USART-lähetystä varten ja sen jälkeen määrittää oheislaitteet timer2, ADC, CCP ja USART. AD-muunninta varten valitaan vain yksi analoginen tulokanava määritysprosessin aikana. Ajastinyksikkö Timer2 sallitaan ja ohjelma alkaa kysyä lippubitin TMR2IF tilaa. Tämä bitti asettuu ykköseksi aina, kun rekisterien TMR2 ja PR2 sisällöt täsmäävät. Kun täsmäys havaitaan, TMR2IF-bitti asettuu, ja AD-muunnos aloitetaan.

Kun AD-muunnos on saatu valmiiksi, ohjelma tarkkailee TRMT-bitin asettumista. Se ilmaisee USART-yksikön TSR-rekisterin olevan tyhjä ja valmiina lähetykseen. Sen jälkeen AD-muunnoksen arvo kirjoitetaan TXREG- ja CCPR2L-rekistereihin. Tämän jälkeen valitaan seuraava analoginen kanava ja prosessi toistetaan. USART- ja CCP-yksiköiden lähdöt vastaanotetaan ja prosessoidaan ulkoisilla piireillä.

Piiritason laitteisto

Kuvassa 3 on esitetty mikro-ohjainlaitteisto piirikaaviona. Sen pohjana on osa PICDEM 2 Plus -demokortin piirikaaviosta lisättynä muutamilla oheiskomponenteilla.

Kuva 3: PIC16F7X- ja PIC16C7X-mikro-ohjainten demopiirikaavio.

Kytkemistä analogisten tulokanavien välillä demonstroidaan säätövastusten RP1 ja RP2 avulla. Näillä trimmereillä määrätään myös tulojännitteen taso, joka syötetään AD-muuntimelle. PWM-yksikön lähtönastaan RC1/CCP2 on kytketty ledi L1, joka on sarjassa virranrajoitusvastuksen R1 kanssa. Piiri U2 on RS232-sarjaliitännän linjaohjain, joka muodostaa sähköisen liitännän USART-yksikön ja sarjaporttiliittimen P1 välille.

Analoginen tulojännite syötetään AD-muuntimelle, joka muuntaa jännitteen vastaavaksi digitaaliseksi arvoksi. Jännite otetaan tulolinjasta AN0 tai AN1 riippuen analogisen tulokanavan määrittelystä. Digitaalinen tulos siirretään sekä USART- että CCP-yksiköille. USART lähettää tämän arvon sarjapääteohjelmalle, joka näyttää lähtöarvon tietyssä muodossa riippuen päätteen konfiguraatiosta. Lisäksi CCP-yksikön PWM-lohkossa voidaan muuttaa lähtöpulssin käyttöjaksoa (duty cycle) ja säätää näin ledin kirkkautta.

Sarjamuotoista lähetystä ja näyttöä varten USART-yksikön lähtö lähetetään sarjamuotoiselle pääteohjelmalle kytkemällä USB-to-UART-sarjamuunnin PICDEM 2 Plus -demokortin sarjaporttiliittimen ja PC:n USB-liittimen väliin, kuten kuvasta 4 nähdään. USB-to-UART-sarjamuuntimena voidaan käyttää esimerkiksi Microchipin MCP2200-muunninpiiriä.

Kuva 4: Sarjamuotoisen lähetyksen lohkokaavio.

Koska AD-muunnokseen käytetään kahta analogista kanavaa, myös PC:n näytöllä nähdään kaksi arvoa. Sarjamuotoista pääteohjelmaa käytetään sieppaamaan, ohjaamaan ja korjaamaan binäärimuotoista datavirtaa. Pääteohjelma pitää asettaa toimimaan 2400 baudin nopeudella, käyttämään kahdeksaa databittiä ja yhtä stop-bittiä sekä toimimaan 'ei pariteettia' -muodossa, jotta yhteensopivuus ohjelmallisten USART-määritysten kanssa saavutetaan. Näytettävä arvo voidaan esittää myös muissa numeerisissa esitysmuodoissa kuten ASCII-, ANSI-, heksadesimaali- tai binäärimuodossa sarjamuotoisen pääteohjelman ominaisuuksista riippuen.

MORE NEWS

Kännykkämarkkina kasvoi vain 3 prosenttia alkuvuonna

Älypuhelinmarkkinoiden globaali kasvu jäi vaatimattomaksi vuoden 2025 ensimmäisellä neljänneksellä, kertoo tutkimusyhtiö Counterpoint Research tuoreessa raportissaan. Markkinatulot nousivat vain 3 prosenttia vuoden takaisesta, mikä vastaa kasvua myös toimitusmäärissä.

Uuden polven SiC-tekniikka kutistaa sähköauton invertterin

Infineon esittelee tehoelektroniikan PCIM-messuilla Nürnbergissä uraauurtavan piikarbidikomponentin, joka tehostaa sähköautojen vetojärjestelmiä – pienemmät, kevyemmät ja energiatehokkaammat invertterit ovat askeleen lähempänä.

Nokian privaattiverkko seuraa jatkossa Maerskin rahtilaivoja

Nokia on solminut merkittävän sopimuksen tanskalaisen logistiikkajätti Maerskin kanssa toimittaakseen privaattiverkkoratkaisunsa yhtiön 450 rahtialukseen. Kyseessä on osa Maerskin uutta IoT-alustaa, OneWirelessia, jonka tavoitteena on parantaa reaaliaikaista rahtiseurantaa, toimitusketjun näkyvyyttä ja operatiivista tehokkuutta.

Piinanolanka-akku siirtyy vihdoin tuotantoon

Kalifornialainen vuonna 2008 perustettu Amprius Technologies on valmis siirtymään sarjatuotantoon uudenlaisen akkukenno­tekniikkansa kanssa. Yhtiön "Sicore"-niminen kenno käyttää pii-nanopilareihin perustuvaa anoditeknologiaa ja saavuttaa huipputason energiatiheyden: 450 Wh/kg painon mukaan ja 950 Wh/l tilavuuden mukaan.

6G vaatii uutta radiotaajuussuunnittelua

Suomalaiset huippuyritykset ja tutkimuslaitokset ovat yhdistäneet voimansa uuden sukupolven mobiiliverkkojen kehittämiseksi. Oulun yliopiston vetämä RF ECO3 -hanke tähtää tulevaisuuden 6G-teknologian kriittiseen osa-alueeseen: tehokkaampaan ja kestävämpään radiotaajuussuunnitteluun.

Yksinkertainen ratkaisu kasvattaa sähköauton akun eliniän jopa 19-kertaiseksi

Korelaisten POSTECHin (Pohang University of Science and Technology) ja Sungkyunkwanin yliopiston tutkijat ovat löytäneet uuden tavan pidentää sähköautojen litiumioniakkujen käyttöikää jopa 19-kertaiseksi – ilman uusia materiaaleja tai teknologioita. Ratkaisu on yksinkertainen: siinä pitää välttää akun täydellistä tyhjentämistä.

GaN tekee moottorinohjauksesta tehokkaampaa

GaN-teknologian edelläkävijä Navitas Semiconductor on julkistanut uuden GaNSense Motor Drive IC -piirisarjan, joka mullistaa moottorinohjauksen tehokkuuden ja integraation. Uusi ratkaisu yhdistää kaksi galliumnitridi-FET-transistoria (GaN FET), ohjauksen, suojaukset ja virranmittauksen yhteen, täysin integroituun piiriin.

DigiKey alkaa myymään vakiotyökaluja

DigiKey on lanseerannut oman, yksinoikeudella myytävän tuotesarjansa nimeltä DigiKey Standard. Uusi vakiokomponenttien valikoima koostuu sähkö- ja elektroniikkasuunnittelun perustyökaluista ja tarvikkeista, jotka ovat heti saatavilla nopeaan toimitukseen.

Kuutiosentin kokoinen projektori AR-laseihin

Itävaltalainen teknologiayhtiö TriLite tuo markkinoille uuden, vallankumouksellisen Trixel 3 Cube -projektorin, joka esitellään ensi kertaa yleisölle Display Week 2025 -tapahtumassa San Josessa, Kaliforniassa. Trixel 3 Cube on maailman pienin ja kevyin laserkeilaukseen perustuva projektionäyttö.

Lightning-liitäntä katosi Suomesta

Älypuhelinmarkkina Suomessa on käännekohdassa, kun sekä kuluttajakäyttäytyminen että uusi EU-lainsäädäntö muovaavat sitä nopeassa tahdissa. Vuoden 2025 ensimmäisellä neljänneksellä puhelinten ja oheislaitteiden myynti laski kappalemäärissä 1,1 %, mutta myynti euroissa nousi 2,7 prosenttia verrattuna edellisvuoden vastaavaan aikaan.

200 miljoonan käyttäjän avoin ODF täyttää 20 vuotta

Open Document Format (ODF), maailman ainoa laajasti käytetty avoin standardi toimistodokumenteille, on täyttänyt 20 vuotta OASIS-järjestön virallisena standardina. Yli 200 miljoonaa käyttäjää turvautuu ODF:ään arjessaan.

Realme näyttää, että kännykkäakuissa on paljon kehitettävää

Älypuhelinvalmistaja realme julkaisee ensi viikolla uudet realme 14 5G- ja realme 14T -mallit, jotka nostavat erityisesti akunkeston uudelle tasolle. Uutuusmallit on suunniteltu tarjoamaan poikkeuksellisen pitkän käyttöajan, ja ne haastavat kilpailijat keskiluokan älypuhelinmarkkinoilla.

EU:n Chips Act saa kovaa kritiikkiä: tavoitteet epärealistisia

Euroopan tilintarkastustuomioistuin on esittänyt voimakasta kritiikkiä EU:n puolijohdestrategiaa, eli niin sanottua Chips Actia, kohtaan. Tuoreessa raportissaan tuomioistuin toteaa, että ohjelman keskeinen tavoite – nostaa EU:n osuus kehittyneiden ja energiatehokkaiden puolijohteiden maailmanlaajuisesta tuotannosta 20 prosenttiin vuoteen 2030 mennessä – on nykymenolla saavuttamattomissa.

C++ sopii piirien suunnitteluun, mutta ei aina

Diplomi-insinööri Sakari Lahden tuore väitöskirjatutkimus Tampereen yliopistosta osoittaa, että korkean tason synteesi voi jopa puolittaa piirien kehitystyöhön kuluvan ajan verrattuna manuaaliseen RTL-suunnitteluun. Erityisesti FPGA-pohjaisissa projekteissa HLS tarjoaa huomattavan tuottavuushyödyn, kun aikaa vievät mikroarkkitehtuurin yksityiskohdat jätetään automaattisen työkalun huoleksi.

Uudenlainen valoanturi kiihdyttää optisen datansiirron nopeuden jopa 10-kertaiseksi

Elektroniikka- ja materiaaliteknologiayhtiö TDK on esitellyt vallankumouksellisen uuden valoanturin, joka lupaa kiihdyttää optisen datansiirron nopeuden jopa kymmenkertaiseksi nykyisiin teknologioihin verrattuna. Kyseessä on Spin Photo Detector – niminen muunnoselementti, joka yhdistää optiikan, elektroniikan ja magneettisuuden täysin uudella tavalla.

Tämän piti olla melkein mahdotonta – Wi-Fi 7 tulee IoT-käyttöön

Synaptics on rikkonut odotuksia tuomalla Wi-Fi 7 -teknologian kevyisiin ja vähävirtaisiin IoT-laitteisiin. Yhtiön uusi Veros-sarjan piiri tarjoaa huippunopeuden, matalan latenssin ja monipuolisen yhdistettävyyden, mikä avaa uusia mahdollisuuksia älylaitteille.

Uusi eSIM tulee Telenorin IoT-verkkoon

Telenor IoT ottaa käyttöön uuden sukupolven SGP.32-eSIM-standardin syksyllä 2025, vahvistaen asemaansa edelläkävijänä teollisen IoT-yhteyksien hallinnassa. Uusi standardi tuo merkittäviä parannuksia skaalautuvuuteen, hallinnan helppouteen ja energiankulutuksen optimointiin verrattuna aiempiin eSIM-ratkaisuihin.

Olisiko UWB parempi kuulokkeisiin kuin Bluetooth?

UWB-teknologia, joka lähettää dataa nopeina purskeina erittäin laajalla taajuusalueella (3,1–10,6 GHz), tarjoaa useita etuja perinteiseen Bluetoothiin verrattuna. Siinä missä Bluetoothin parhaatkin koodekit, kuten aptX Lossless ja LDAC, jäävät 1–1,2 megabitin sekuntinopeuksiin, UWB voi teoriassa tarjota yli 100 Mbps siirtonopeuden jopa 10 metrin säteellä.

Click-lisäkortti tarkkaan moottorinohjaukseen

MIKROE on julkaissut uuden Power Step 2 Click -lisäkortin, joka tuo erittäin tarkan ja tehokkaan moottorinohjauksen osaksi mikroBUS-ekosysteemiä. Uutuus sopii vaativiin sovelluksiin, kuten robotiikkaan, lääkintälaitteisiin, antennien suuntaukseen sekä turvajärjestelmiin.

​Intelin uusi pomo laittaa tuulemaan – joka viides saa lähteä

Intel on ilmoittanut suunnittelevansa vähentävänsä jopa yli 20 prosenttia henkilöstöstään. San Francisco Chroniclen raportoimat vähennyksen olisivat samalla yhtiön historian suurin irtisanomisaalto.

Rekoistakin pitää tulla hiilivapaita

Maantiekuljetukset ovat elintärkeitä talouselämälle. Kuorma-autoilla kuljetetaan ruokaa, tarvikkeita, materiaaleja ja monia muita tavaroita mihin tahansa paikkaan. Vaikka keskiraskaiden ja raskaiden kuorma-autojen osuus maailman ajoneuvoista on vain neljä prosenttia, niiden osuus tieliikenteen hiilidioksidipäästöistä on 40 prosenttia, tehden niistä kasvihuonekaasupäästöjen päälähteen, joka on otettava huomioon pyrittäessä kohti hiilivapautta.

Lue lisää...

Kovaa käyttöä kestävät koneet voi ostaa palveluna

Kenttätyö vaatii kovia koneita – ja nyt ne saa palveluna. Panasonicin uusi Toughbook Mobile-IT As-A-Service (MaaS) -ratkaisu mullistaa tavan, jolla liikkuvaa työtä tukevat laitteet ja IT-palvelut hankitaan ja hallitaan. Ei enää isoja kertahankintoja, pitkiä IT-projekteja tai laitteiden elinkaaren miettimistä – nyt saat kaiken tarvittavan helposti ja kuukausimaksulla.

Lue lisää...

 

Tule tapaamaan meitä tulevissa tapahtumissamme.
R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.
 
R&S -seminaari: 6G
Oulussa 13.5.2025 (rekisteröidy)
Espoossa 14.5.2025 (rekisteröidy)
 
R&S -seminaari: Calibration
Tampereella 22.5.2025 (rekisteröidy)
 
R&S -seminaari: Aerospace & Defence Testing
Tampereella 5.6.2025. Tiedustelut asiakaspalvelu@rohde-schwarz.com
 

 

LATEST NEWS

NEW PRODUCTS

 
 
article