logotypen
 
 

IN FOCUS

Suojaa datasi kunnolla

SSD-levyt tarjoavat luontaisesti korkean luotettavuuden kaikentyyppisiin sovelluksiin, aina aloitustason kuluttajalaitteista kriittisiin järjestelmiin. Asianmukaiset tietosuojamekanismit voivat maksimoida levyn käyttöiän toteuttamalla ennaltaehkäiseviä toimenpiteitä tarpeen mukaan, kertoo Silicon Motion artikkelissaan.

Lue lisää...

Jotta mikro-ohjainsovelluksissa päästäisiin haluttuihin lähtö- ja näyttöarvoihin, on tarpeen määrittää ensin ohjainpiirin kukin oheislaite vaiheittain. AD-muunnin, ajastimet sekä CCP- ja USART-yksiköt kannattaa konfiguroida ja toteuttaa askel kerrallaan ja liittää lopuksi yhteen.

Artikkelin kirjoittaja Mark Pallones toimii Microchip Technologyn MCU08-sovellustiimin vetäjänä. Hän tuli Microchipin palvelukseen vanhemmaksi sovellusinsinööriksi vuonna 2010. Nykyisessä tehtävässään Mark on toiminut syksystä 2013 lähtien. Aiemmin hän työskenteli esimerkiksi Emerson Network Powerilla suunnittelijana. Hänellä on elektroniikkainsinöörin tutkinto Manilan yliopistosta Filippiineillä.

Saadakseen kaiken irti modernista mikro-ohjaimesta on varmistettava, että ohjainpiiriin integroidut oheislaitteet on määritetty oikein. Yleensä tämä vaatii etenemistä askel kerrallaan, ennen kuin kokonaisuus voidaan liittää yhteen.

Tämän ennakointi on erityisen tärkeää siinä vaiheessa, kun mikro-ohjainta valitaan, koska kunkin ohjaintyypin oheislaitteet soveltuvat parhaiten tiettyjen sovellusten erityistarpeisiin. Ellei tässä vaiheessa ole huolellinen, oheislaitteiden tehokkuus saattaa jäädä vajavaiseksi.

Hyvänä esimerkkinä voi tarkastella Microchipin keskitason 8-bittisten mikro-ohjainten perheitä PIC16F7X ja PIC16C7X. Näistä ensin mainittu on flash-tyyppinen piiriperhe ja jälkimmäinen tyypiltään kertaohjelmoitava (OTP). Niiden sisältämiä oheislaitteita ovat ajastimet, sieppaus-vertaus-tyyppiset (CCP) PWM-lohkot, AD-muunnin sekä USART-lähetin-vastaanotin.

AD-muunnin

ADC-yksikkö muuntaa analogisen tulosignaalin vastaavaksi 8-bittiseksi digitaalikoodiksi. Sisäisen näytteenotto- ja pitopiirin lähtö toimii tuloliitäntänä AD-muuntimelle, joka generoi tuloksen peräkkäisapproksimaation avulla. Analogiseksi vertailujännitteeksi voidaan ohjelmallisesti valita ohjainpiirin positiivinen syöttöjännite (VDD) tai jännitetaso piirin Vref-nastassa. AD-muunninta on mahdollista käyttää myös silloin, kun ohjainpiiri on lepotilassa. AD-muunnoksen toteutus on esitetty lohkokaaviona kuvassa 1.

Kuva 1: AD-muunnoksen toteutuksen lohkokaavio.

AD-muunnin koostuu kolmesta rekisteristä: kaksi ohjausrekisteriä ADcon0 ja ADcon1 sekä tulosrekisteri ADres. ADcon0 ohjaa muuntimen toimintaa. Sen avulla valitaan muunnoksen kellotaajuus ja analoginen kanava. Se myös määrittää muunnostapahtuman aloituksen ja lopetuksen. ADcon1 puolestaan määrittää liitäntänastojen toiminnot. Mikro-ohjaimella on joko viisi tai kahdeksan I/O-nastaa, jotka voidaan määrittää analogisiksi tulolinjoiksi.

Kun ADcon0 ja ADcon1 on määritetty, ADcon0-rekisterin go/done-bitti asetetaan ykköseksi, mikä käynnistää muunnoksen ja asettaa rekisterin valvomaan, milloin muunnos on saatu tehdyksi. Kun AD-muunnos on saatu valmiiksi, tulos ladataan ADres-rekisteriin, go/done-bitti nollataan ja keskeytyslippubitti (ADif) asetetaan ykköseksi.

Muunnoksen tuloksena saatu näytekoodi luetaan ADres-rekisteristä ja siirretään USART- sekä CCP-moduuleihin (Capture-Compare PWM). Vaihtaminen kahden analogisen tulokanavan välillä tapahtuu muuttamalla CHS2:CHS0-bittien arvoja ADcon0-rekisterissä. Kuvassa 1 nähdään vain analogiatulot AN1 ja AN0, mutta mitkä tahansa analogisista tulokanavista voidaan valita CHS2:CHS0-bittien avulla.

Ajastimet

Mikro-ohjaimissa on kolme ajastinlohkoa: timer0, timer1 ja timer2. Kukin niistä voi tuottaa keskeytyksen, kun jokin tapahtuma, kuten ajastimen ylivuoto, on ilmennyt. Timer0 on yksinkertainen 8 bitin ajastin-laskuri. Timer1 puolestaan on 16-bittinen ajastin-laskuri, joka koostuu kahdesta 8-bittisestä rekisteristä, jotka ovat tyypiltään luettavia ja kirjoitettavia.

Timer2 on 8-bittinen ajastin, joka sisältää esiskaalaimen, jälkiskaalaimen ja periodirekisterin. Käyttämällä esi- ja jälkiskaalainta enimmäisasetuksin, ylivuotoaika on sama kuin 16-bittisellä ajastimella. Timer2 toimii pulssinleveysmodulaation aika-akselina, kun CCP-moduulia käytetään PWM-toimintamuodossa.

PWM-muodossa täytyy määrittää timer2:n periodirekisteri (PR2) ja ohjausrekisteri (T2con) sekä PIR1-rekisteri. PWM-lähtö koostuu aika-akselista (periodi) ja käyttöjaksosta eli ajasta, jonka lähtö pysyy ylhäällä (duty cycle). PWM-taajuus on periodin käänteisarvo. PWM-periodi määritetään kirjoittamalla PR2-rekisteriin.

CCP-tyyppiset PWM-moduulit

Ohjaimet sisältävät kaksi sieppaus-vertaus-tyyppistä PWM-yksikköä. Kumpikin niistä koostuu 16-bittisestä rekisteristä, jotka voivat toimia 16-bittisenä sieppausrekisterinä, 16-bittisenä vertausrekisterinä tai 10-bittisenä isäntä-renki-tyyppisenä PWM-käyttöjaksorekisterinä. Yksiköt ovat toiminnoiltaan muuten identtiset, mutta poikkeavat toisistaan erityistapahtumien liipaisumahdollisuuksien osalta.

USART-yksikkö

Ohjaimen USART-lohko eli yleiskäyttöinen synkroninen/asynkroninen lähetin-vastaanotin on toinen kahdesta sarjamuotoisesta I/O-lohkosta - toinen on SSP eli synkroninen sarjaportti. USART-yksikköä kutsutaan myös nimellä SCI (Serial Communications Interface). Sen voi konfiguroida täysdupleksimuotoon asynkroniseksi järjestelmäksi, joka kommunikoi ulkoisten oheislaitteiden kuten näyttöpäätteiden ja PC-koneiden kanssa. Vaihtoehtoisesti sen voi määrittää puolidupleksimuotoon synkroniseksi järjestelmäksi, joka voi kommunikoida esimerkiksi ulkoisten AD- ja DA-muunninpiirien tai sarja-EEPROM-piirien kanssa.

Esimerkkiohjelmassa yksikkö on konfiguroitu täysdupleksimuotoon asynkroniseksi järjestelmäksi kommunikoimaan PC:n kanssa. Tässä USART-lohkoa käytetään vain lähettämiseen. Toimintaan tarvittavat rekisterit ovat baudinopeuden generointirekisteri SPBRG, lähetystila- ja valvontarekisteri TXSTA, vastaanottotila- ja valvontarekisteri RCSTA sekä lähetysdatarekisteri TXREG.

8-bittinen SPBRG-rekisteri ohjaa vapaasti juoksevan 8-bittisen ajastimen jakson pituutta. Asynkronisessa toimintamuodossa yksi bitti ohjaa myös baudinopeutta. Synkronisessa muodossa tämä bitti ei ole käytössä.

Asynkroninen toimintamuoto ja 8-bittinen lähetysmuoto valitaan TXSTA-rekisterissä. Sen 'lähetys sallittu' -bitti TXen mahdollistaa datan lähettämisen. Lähetyksen siirtorekisterin statusbitti TRMT on ainoastaan luettava bitti, joka ilmaisee lähetyksen siirtorekisterin (TSR) tilan. Lähetyksen käynnistämiseksi on RCSTA-rekisterin SPen-bitti (serial port enable) ensin asetettava ykköseksi. Lähetysdatarekisteriin TXREG kirjoittaminen käynnistää sen jälkeen lähetyksen. Esimerkkikoodissa AD-muunnoksen tulos kopioidaan TXREG-rekisteriin. Arvo siirretään automaattisesti siirtorekisteriin TSR ja edelleen ulos ohjainpiirin RC6/TX-nastan kautta.

Oheislaitteiden liittäminen

Sen jälkeen kun ohjainpiirin kukin oheislaite on määritetty, ne pitää liittää vielä yhteen. Esimerkkiohjelman koodiin kuuluva silmukkasegmentti osoittaa, miten oheislaitteet on liitetty toisiinsa. Määritys- ja liitäntäprosessit on koottu kiinteän ohjelman vuokaavioon kuvassa 2.

Kuva 2: Kiinteän ohjelmiston vuokaavio.

Kaikki I/O-liitännät täytyy ensin alustaa. Myös sarjaliitännät pitää sallia USART-lähetystä varten ja sen jälkeen määrittää oheislaitteet timer2, ADC, CCP ja USART. AD-muunninta varten valitaan vain yksi analoginen tulokanava määritysprosessin aikana. Ajastinyksikkö Timer2 sallitaan ja ohjelma alkaa kysyä lippubitin TMR2IF tilaa. Tämä bitti asettuu ykköseksi aina, kun rekisterien TMR2 ja PR2 sisällöt täsmäävät. Kun täsmäys havaitaan, TMR2IF-bitti asettuu, ja AD-muunnos aloitetaan.

Kun AD-muunnos on saatu valmiiksi, ohjelma tarkkailee TRMT-bitin asettumista. Se ilmaisee USART-yksikön TSR-rekisterin olevan tyhjä ja valmiina lähetykseen. Sen jälkeen AD-muunnoksen arvo kirjoitetaan TXREG- ja CCPR2L-rekistereihin. Tämän jälkeen valitaan seuraava analoginen kanava ja prosessi toistetaan. USART- ja CCP-yksiköiden lähdöt vastaanotetaan ja prosessoidaan ulkoisilla piireillä.

Piiritason laitteisto

Kuvassa 3 on esitetty mikro-ohjainlaitteisto piirikaaviona. Sen pohjana on osa PICDEM 2 Plus -demokortin piirikaaviosta lisättynä muutamilla oheiskomponenteilla.

Kuva 3: PIC16F7X- ja PIC16C7X-mikro-ohjainten demopiirikaavio.

Kytkemistä analogisten tulokanavien välillä demonstroidaan säätövastusten RP1 ja RP2 avulla. Näillä trimmereillä määrätään myös tulojännitteen taso, joka syötetään AD-muuntimelle. PWM-yksikön lähtönastaan RC1/CCP2 on kytketty ledi L1, joka on sarjassa virranrajoitusvastuksen R1 kanssa. Piiri U2 on RS232-sarjaliitännän linjaohjain, joka muodostaa sähköisen liitännän USART-yksikön ja sarjaporttiliittimen P1 välille.

Analoginen tulojännite syötetään AD-muuntimelle, joka muuntaa jännitteen vastaavaksi digitaaliseksi arvoksi. Jännite otetaan tulolinjasta AN0 tai AN1 riippuen analogisen tulokanavan määrittelystä. Digitaalinen tulos siirretään sekä USART- että CCP-yksiköille. USART lähettää tämän arvon sarjapääteohjelmalle, joka näyttää lähtöarvon tietyssä muodossa riippuen päätteen konfiguraatiosta. Lisäksi CCP-yksikön PWM-lohkossa voidaan muuttaa lähtöpulssin käyttöjaksoa (duty cycle) ja säätää näin ledin kirkkautta.

Sarjamuotoista lähetystä ja näyttöä varten USART-yksikön lähtö lähetetään sarjamuotoiselle pääteohjelmalle kytkemällä USB-to-UART-sarjamuunnin PICDEM 2 Plus -demokortin sarjaporttiliittimen ja PC:n USB-liittimen väliin, kuten kuvasta 4 nähdään. USB-to-UART-sarjamuuntimena voidaan käyttää esimerkiksi Microchipin MCP2200-muunninpiiriä.

Kuva 4: Sarjamuotoisen lähetyksen lohkokaavio.

Koska AD-muunnokseen käytetään kahta analogista kanavaa, myös PC:n näytöllä nähdään kaksi arvoa. Sarjamuotoista pääteohjelmaa käytetään sieppaamaan, ohjaamaan ja korjaamaan binäärimuotoista datavirtaa. Pääteohjelma pitää asettaa toimimaan 2400 baudin nopeudella, käyttämään kahdeksaa databittiä ja yhtä stop-bittiä sekä toimimaan 'ei pariteettia' -muodossa, jotta yhteensopivuus ohjelmallisten USART-määritysten kanssa saavutetaan. Näytettävä arvo voidaan esittää myös muissa numeerisissa esitysmuodoissa kuten ASCII-, ANSI-, heksadesimaali- tai binäärimuodossa sarjamuotoisen pääteohjelman ominaisuuksista riippuen.

MORE NEWS

Kiinalaistutkijat kehittivät piilolinssin, jolla näkee pimeässä

Kiinalaiset tutkijat ovat onnistuneet kehittämään maailman ensimmäisen piilolinssin, jonka avulla ihminen voi nähdä pimeässä – ainakin tietyissä olosuhteissa. Innovaatio perustuu infrapunavaloon ja sen muuntamiseen näkyväksi valoksi silmälle.

ST:ltä kova saavutus: kaksi kiihtyvyysanturia samaan koteloon

STMicroelectronics on tehnyt merkittävän teknologisen läpimurron julkaisemalla uuden sukupolven älyanturin, joka yhdistää kaksi erillistä kiihtyvyysanturia samaan poikkeuksellisen pieneen (3 x 2,5 mm) koteloon. Tämä on ensimmäinen kerta, kun samassa moduulissa yhdistyy laajalle G-voima-alueelle skaalautuva mittauskyky, sulautettu tekoäly ja erittäin tarkka liikkeentunnistus.

Näin QR-huijaus toimii

QR-koodit ovat tulleet osaksi arkea: niitä käytetään ravintolamenuihin tutustumiseen, maksamiseen ja nopeaan kirjautumiseen eri palveluihin. Mutta juuri tämä tuttuus tekee niistä vaarallisia. Rikolliset ovat alkaneet hyödyntää QR-koodeja huijauksiin, joissa ihmiset johdatellaan huomaamatta väärennetyille sivustoille. Näillä sivuilla uhrilta kalastellaan henkilökohtaisia tietoja – kuten pankkitunnuksia – tai pyritään asentamaan haittaohjelmia hänen laitteelleen.

Halvoissa Android-televisiobokseissa vakavia tietoturvariskejä

Liikenne- ja viestintävirasto Traficom kehottaa kuluttajia olemaan tarkkana Android TV -medialaitteiden hankinnassa. Markkinoilla liikkuu erityisesti tuntemattomien valmistajien edullisia laitteita, joissa on havaittu vakavia tietoturvaongelmia – osa laitteista on jopa sisältänyt haittaohjelmia suoraan pakkauksesta.

3D-tulostus on tie kestävään elektroniikkavalmistukseen

ETN - Technical articlePerinteinen elektroniikan valmistus perustuu prosesseihin, jotka johtavat usein materiaalihävikkiin, korkeisiin työkalukustannuksiin ja merkittäviin varastointikuluihin. Viime vuosina lisäävä valmistus (additive), erityisesti 3D-tulostus, on kuitenkin alkanut nousta varteenotettavaksi vaihtoehdoksi elektroniikan valmistuksessa, sillä se tarjoaa lisää suunnittelun joustavuutta sekä mahdollisia ympäristö- ja taloudellisia etuja.

Xiaomi yllättää tehokkaalla kännykkäprosessorillaan

Xiaomi on julkistanut uuden huipputehokkaan älypuhelinprosessorinsa, XRING O1:n, joka merkitsee yhtiön suurta askelta kohti siruomavaraisuutta ja teknologista johtajuutta. Uutuus esiteltiin yhtiön "A New Beginning" -lanseeraustapahtumassa Pekingissä, jossa esillä olivat myös Xiaomi 15S Pro -älypuhelin, Pad 7 Ultra -tabletti sekä useita AIoT-laitteita.

Nyt se tapahtui: BYD ohitti Teslan

BYD on ohittanut Teslan Euroopan myydyimpänä täyssähköautojen valmistajana ensimmäistä kertaa historiassa, kertoo tuore JATO Dynamicsin raportti. Huhtikuussa 2025 Euroopassa rekisteröitiin 7231 täyssähköistä BYD-mallia, kun Tesloja myytiin 7165 kappaletta.

Yksi piiri pidentää langattoman laitteen käyttöaikaa

Elektroniikan komponenttien jakelija Rutronik on lisännyt tuotevalikoimaansa Nordic Semiconductorin uuden nPM2100-virranhallintapiirin, joka on suunniteltu erityisesti ensisijaisilla paristoilla toimivien laitteiden energiatehokkaaseen virranhallintaan.

Autoon tulee tekoäly ja suoja kvanttihyökkäyksiä vastaan

Autojen ohjelmistoistuminen ja jatkuva verkkoyhteys tekevät niistä alttiita yhä kehittyneemmille kyberuhille. NXP:n uusi OrangeBox 2.0 -kehitysalusta vastaa tähän haasteeseen yhdistämällä tekoälypohjaisen kyberturvan, kvanttikestävän salauksen ja ohjelmisto-ohjatun verkkoinfrastruktuurin yhteen järjestelmään.

Näin otat tekoälyn käyttöön teollisuudessa

Vaikka monet organisaatiot ovat jo ottaneet käyttöön perinteisiä tekoälyagentteja, tie täysin autonomisiin tekoälyagentteihin voi sisältää haasteita. Tekemällä strategisia investointeja ja omaksumalla metodisen lähestymistavan agenttien skaalaamiseen, sekä niiden erityisten roolien määrittelyyn, teollisuusyritykset voivat päästä loputtomalta tuntuvien kokeilujen yli ja alkaa nauttia tekoälyagenttien hyödyistä todellisessa elämässä, kirjoittaa teollisuuden ohjelmistoja kehittävän IFS:n tekoälyjohtaja Bob De Cuax.

Kaikista Intelin prosessoreista löytyi täysin uusi haavoittuvuus

Tietoturvatutkijat Sveitsin ETH Zürichin yliopistosta ovat löytäneet uuden, vakavan haavoittuvuuden Intelin prosessoreista. Kyseessä on täysin uusi haavoittuvuusluokka, jota kutsutaan nimellä Branch Privilege Injection. Se perustuu tapaan, jolla prosessorit ennakoivat tulevia laskentatehtäviä suorituskyvyn parantamiseksi.

Suomesta halutaan kvanttiturvallinen

Suomi ottaa merkittävän askeleen kohti kvanttiturvallista digitaalista tulevaisuutta. Uusi laaja tutkimushanke, Beyond the Limits of Post-Quantum Cryptography (BLimPQC), pyrkii varmistamaan, että suomalainen yhteiskunta ja teollisuus kykenevät puolustautumaan kvanttitietokoneiden aiheuttamia tietoturvauhkia vastaan.

Suosittu kehittäjäkortti sai neljä ydintä ja grafiikkaprosessorin

BeagleBoard.orgin tunnettu PocketBeagle-kehittäjäkortti on saanut merkittävän päivityksen uudessa PocketBeagle 2 -versiossa. Uudistuksessa laitteeseen on lisätty neliytiminen suoritin ja ensimmäistä kertaa myös grafiikkaprosessori, mikä avaa entistä laajempia mahdollisuuksia sulautettujen järjestelmien kehittämiseen.

Tehoa ja tarkkuutta teolliseen skannaukseen

Saksalainen piirivalmistaja iC-Haus tuo markkinoille uuden iC-LFMB-lineaarikuvakennon, joka vastaa teollisuuden kasvaviin vaatimuksiin tarkkuuden, suorituskyvyn ja helpon integroitavuuden osalta. Uutuustuote esitellään Laser World of Photonics 2025 -messuilla Münchenissä.

Lidarin moottori yhdelle sirulle

Analogiatekniikan edelläkävijä Silanna Semiconductor on lanseerannut uuden FirePower-sarjan laserajuripiirit, jotka yhdistävät ensi kertaa korkean jännitteen latauksen ja laserin laukaisun yhdelle sirulle. Uutuus mahdollistaa merkittävän tilansäästön ja tehohäviöiden pienentämisen esimerkiksi autojen ADAS-järjestelmien lidareissa.

Virve 2 saa suojatut ryhmävideopuhelut

Erillisverkkojen operoima viranomaisverkko Virve 2 saa merkittävän lisäpalvelun, kun Modirumin kehittämä NSC3 Group Video Service otetaan käyttöön. Kyseessä on reaaliaikainen, tietoturvallinen ryhmävideopalvelu, joka on suunniteltu erityisesti viranomaisten ja muiden turvallisuustoimijoiden tarpeisiin.

Kenttälaitteita helposti teollisuusverkkoon

STMicroelectronics on julkaissut uuden modulaarisen IO-Link-kehityspaketin, jonka tavoitteena on tehdä älykkäiden kenttälaitteiden liittäminen teollisuusverkkoon helpommaksi kuin koskaan. Uusi P-NUCLEO-IOD5A1-paketti tarjoaa kaiken tarvittavan IO-Link-yhteensopivan sensorin tai toimilaitteen (aktuaattorin) kehittämiseen – sekä laitteiston että ohjelmiston.

Silmää seuraavat lasit teollisuuteen

Tukholmalainen teknologiayritys Tobii on lanseerannut uuden Glasses X -silmänseurantatuotteen, joka on suunnattu erityisesti teollisuuden ja muiden vaativien alojen tarpeisiin. Uutuuslaseilla voidaan seurata käyttäjän katsetta reaaliajassa, mikä tarjoaa yrityksille arvokasta tietoa esimerkiksi koulutuksen, laadunvalvonnan ja turvallisuuden kehittämiseen.

Kovien olojen läppäri laitetaan kovaan testiin

Panasonicin kenttäkäyttöön suunniteltu Toughbook G2 altistetaan äärimmäiselle rasitukselle, kun seikkailujuoksija Jukka Viljanen juoksee halki Islannin suurimman jäätikön, Vatnajökullin, ilman tukitiimiä. Hänellä on ainoana henkilökohtaisena varusteenaan mukana kyseinen kannettava tietokone.

Kvanttitason salaus laitetasolla

Tietoturvassa valmistaudutaan kvanttikauteen. Microchip Technology on julkaissut uuden MEC175xB-sarjan sulautetut ohjaimet, jotka sisältävät laitetasolla toteutettua kvanttiturvallista salausta. Uutuustuote vastaa nopeasti kehittyvän kyberturvallisuusympäristön tarpeisiin, kun kvanttitietokoneiden mahdollinen uhka nykyisille salausmenetelmille kasvaa.

3D-tulostus on tie kestävään elektroniikkavalmistukseen

ETN - Technical articlePerinteinen elektroniikan valmistus perustuu prosesseihin, jotka johtavat usein materiaalihävikkiin, korkeisiin työkalukustannuksiin ja merkittäviin varastointikuluihin. Viime vuosina lisäävä valmistus (additive), erityisesti 3D-tulostus, on kuitenkin alkanut nousta varteenotettavaksi vaihtoehdoksi elektroniikan valmistuksessa, sillä se tarjoaa lisää suunnittelun joustavuutta sekä mahdollisia ympäristö- ja taloudellisia etuja.

Lue lisää...

Näin otat tekoälyn käyttöön teollisuudessa

Vaikka monet organisaatiot ovat jo ottaneet käyttöön perinteisiä tekoälyagentteja, tie täysin autonomisiin tekoälyagentteihin voi sisältää haasteita. Tekemällä strategisia investointeja ja omaksumalla metodisen lähestymistavan agenttien skaalaamiseen, sekä niiden erityisten roolien määrittelyyn, teollisuusyritykset voivat päästä loputtomalta tuntuvien kokeilujen yli ja alkaa nauttia tekoälyagenttien hyödyistä todellisessa elämässä, kirjoittaa teollisuuden ohjelmistoja kehittävän IFS:n tekoälyjohtaja Bob De Cuax.

Lue lisää...

 

Tule tapaamaan meitä tulevissa tapahtumissamme.
R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.
 
R&S -seminaari: Calibration
Tampereella 22.5.2025 (rekisteröidy)
 
R&S -seminaari: Aerospace & Defence Testing
Tampereella 5.6.2025. Tiedustelut asiakaspalvelu@rohde-schwarz.com
 

 

LATEST NEWS

NEW PRODUCTS

 
 
article