Tehojärjestelmissä puhutaan nyt uusista laajan kaistaeron materiaaleista. Mutta mitä GaN- tai SiC-komponenttien käyttäminen edellyttää ja mihin sillä voidaan päästä? Future Electronicsin tekemä vertailu kertoo paljon.

Perinteinen piipohjainen teho-MOSFET on helposti saatavilla oleva edullinen komponentti, joka on varmasti jatkossakin tehokytkinten perusta vuosien ajan. Suurjännitemuuntimissa sen rajoitukset ovat kuitenkin ilmeisiä. Kytkentähäviöt ovat suuret, mikä johtuu pii-MOSFETin rakenteen ominaisuuksista.

Tämän ongelman ratkaisemiseksi sekä tehokkuuden ja kytkennän parantamiseksi tehojärjestelmien suunnittelijat ovat ottaneet käyttöön useita topologioita, joissa kytkentä onnistuu nollajännitteellä ja/tai nollavirralla. Nämä topologiat ovat kuitenkin monimutkaisia ja edellyttävät monimutkaisten ohjausjärjestelmien käyttöä ja suurta määrää komponentteja.

Kuva 1. GaN HEMT -pohjainen half-bridge -kortti Panasonicin GaN-kytkimillä.

Uuden sukupolven virtakytkimet, jotka on valmistettu laajan kaistaeron galliumnitridi- tai piikarbidimateriaaleista, ovat antaneet suunnittelijoille mahdollisuuden harkita uusien virtatopologioiden käyttöä, jotka ovat yksinkertaisempia toteuttaa ja käyttävät vähemmän komponentteja. Silti niillä saavutetaan huomattavasti parempi tehokkuus. Tämä johtuu siitä, että sekä GaN- että SiC-virtakytkimillä on luonnostaan pienemmät häviöt kytkettäessä suoraan suurjännitteestä.

Sillaton toteeminapainen PFC-topologia (Power Factor Correction) herättää erityistä kiinnostusta suuritehoisissa järjestelmissä. PFC-konfiguraatiossa yksi aktiivisilla kytkimillä varustettu puolisilta (half-bridge) joko korkean liikkuvuuden eli HEMT-GaN-transistoreilla (High Electron Mobility Transistors) tai SiC-MOSFETeilla tukee kytkentää minimaalisilla häviöillä.

Tämä kuulostaa hyvältä, mutta tosielämän toteutukset osoittavat, että laitteen kotelo, ohjaimen valinta ja piirilevyn asettelu vaikuttavat merkittävästi laajan kaistaeron piirien suorituskykyyn kytkettäessä suurella jännitteellä. Future Electronicsin tehojärjestelmien suunnittelutiimi yhtiön Eghamin osaamiskeskuksessa on testannut ja vertaillut erilaisia half-bridge -kokoonpanoja käyttämällä sekä GaN HEMT- että SiC MOSFET -piirejä sillattomassa toteeminapaisessa PFC-topologiassa. Tässä artikkelissa esitellään vertailun tuloksia ja ehdotetaan parhaita ratkaisuja laajan kaistaeron tehokomponenttien käyttämisestä suuren jännitteen kytkentäjärjestelmiin.

GaNdalf-EVALUOINTIALUSTA

Eri komponenttien arviointi tehtiin GaNdalf-alustalla, joka on modulaarinen sillattomalla PCF-piirillä toteutettu kehityskortti. Se tuottaa 400 voltin DC-lähdön verkkovirrasta. GaNdalf-kortissa on laajennusliitäntä, joka mahdollistaa useiden puolisiltakorttien helpon vertaamisen. Nämä voivat olla joko GaN HEMT- tai SiC MOSFET -kortteja eristetyillä ajureilla ja DC-DC-virtalähteillä.

Vertailukohdaksi eri kytkinkokoonpanoille oli puolisiltakortti, jossa käytettiin Panasonicin PGA26E06BA GaN -kytkimiä nopeiden opto-kytkimien eristämänä ja Panasonicin nopeita GaN-ohjaimia (AN34092B) (kuva 1). Tämä järjestelmä saavutti 99 prosentin hyötysuhteen syötettäessä jopa 1 kilowatin kuormia.

Uusien puolisiltakorttien käyttöönotto antoi osaamiskeskuksen suunnittelijoille mahdollisuuden tavoitella suurempia tehoja ja parempaa lämpösuorituskykyä, ja samalla pienentää ajuripiiristön kustannuksia.

Futuren kehittäjät pääsivät myös arvioimaan 600-700 volttiin mitoitettujen SiC MOSFET -piirien etuja 3- tai 4-nastaisissa TO-247-koteloissa. jotka mahdollistivat parempia vaihtoehtoja lämmön poisjohtamiseen.

GaN: LÄMMÖNHALLINTA MIETITYTTÄÄ

Ensimmäiset GaN-pohjaiset puolisiltakortit ovat Infineonilta, Panasonicilta ja Exaganilta. Niiden vastusarvot vaihtelevat välillä 30-190 milliohmia (mΩ). Laitteet toimitetaan pohjapuolelta jäähdytetyissä pintaliitettävissä koteloissa, joissa on 60-80 neliömillimetrin lämpötyynyt.

Piirilevyn rakenne on esitetty kuvassa 2. Jäähdytyselementti (4°C/W) on kytketty puolisiltakorttien kääntöpuolelle ja kytketty sähköisesti PFC-vaiheen ulostulopotentiaaliin. Lämpökosketuspinta jäähdytyselementistä lämpöeristystyynyn ja PCB-pohjakerroksen välillä oli tyypillisesti 300 neliömillimetriä.

Kuva 2. Ylhäältä jäähdytetty GaN HEMT -kokoonpano.

GaN HEMT -piirit tuottavat nopean kytkentänsä takia merkittävästi kohinaa, ja niiden dV/dt-arvo on usein yli 100 V/ns. Suunnittelijan on rajoitettava kohinaa minimoimalla kapasitiivinen kytkentää puolisillan nopeasti kytkevän solmun ja muiden solmujen välillä (ja sen jälkeen maapotentiaaliin). Tämä on kuitenkin ristiriidassa optimaalisen lämmönhallinnan saavuttamisen kanssa, koska GaN HEMT:n lämpöreitti on puolisillan nopea kytkentäsolmu. Vaikka kapasitiivista kytkentää piirilevyn yli voidaan hallita, jotkut kapasitiiviset kytkennät jäähdytyselementtiin ovat väistämättömiä.

GaN-kytkinjärjestelyn sähköisten ja termisten näkökohtien välinen ristiriita vaikutti näiden puolisilta-korttien toimintaan. Korkea kohinataso esti kortin oikean toiminnan, vaikka käytetyt porttiajurit mahdollistivat transienttien immuniteetille yli 100 V/ns arvot.

Futuren kehittäjien oletuksena oli, että ongelman syy oli kapasitiivinen kytkentä jäähdytysele-menttiin. Sen arvoksi laskettiin noin 20 pikofaradia. Jäähdytys-elementin kosketusalueen pienentäminen 300 neliömillimetristä 100 neliömillimetriin pienensi kapasitiivisen kytkennän alle 10 pikofaradiin ja paransi siten kohina-arvoa niin, että kortin toiminta saatiin riittävän hyväksi. Nopeasti kytkevän solmun kosketusalueen pienentäminen kuitenkin väistämättä heikentää lämmön johtumista ja vähentää kuormaa, jota pohjapuolelta jäähdytettyihin GaN-piireihin perustuva järjestelmä voi syöttää ilman tuuletinjäähdytystä.

PÄÄLTÄ JÄÄHDYTTÄMINEN PARANTAA SUORITUSKYKYÄ

Yläpuolelta jäähdytetyn kotelon käyttö poistaa edellä kuvatun ongelman: nyt sähkö- ja lämpöreitit voidaan erottaa.

Ero suorituskyvyssä käytettäessä samaa puolisiltakorttimallia yläpuolelta jäähdytettyjen 70 milliohmin GaN-kytkimien kanssa on huomattava. Ratkaisu toimi erittäin hyvin ilman kohinaongelmia. 99 prosentin hyötysuhteen saavuttava kortti, jossa on ylhäällä asennettu 4°C/W-jäähdytyselementti eikä pakotettua tuuletusta, säilytti kotelon lämpötilan noin 80 asteessa 25-asteisessa tilassa, kun siitä syötettiin 2 kilowatin lähtöä 220 voltin AC-tulosta.

Futuren kehittäjien kokemus GaNdalf-alustasta osoittaa, että GaN-kytkimiin perustuvissa sillattomissa toteeminapaisissa PFC-piireissä, jotka toimivat yli 1 kilowatin tehotasoilla, suositellaan yläpuolelta jäähdytettyjä koteloita, jos järjestelmää on tarkoitus ajaa ilman pakotettua tuuletusta.

SiC MOSFET: ONGELMIA TO-247-KOTELOISSA

GaNdalf-kehitysalustan modulaarisen rakenteen etuna on, että se helpottaa GaN- ja SiC-laitteiden suoraa vertailua. Eghamin tiimi odotti, että SiC MOSFET -tekniikoihin perustuvat puolisilta-kortit tarjoavat hieman alhaisemman tehokkuuden kuin GaN-pohjaiset järjestelmät. Tämä johtuu siitä, että SiC MOSFET -laitteet, joilla on hitaampi dV/dt ja käänteisen palautumisen häviöt suuremmat, tuottavat suurempia kytkentähäviöitä.

GaN HEMT -laitteisiin verrattuna SiC MOSFET -laitteita on saatavana enemmän ja useammilta valmistajilta, esimerkiksi Microchipiltä, ON Semiconductorilta, STMicroelectronicsilta, Infineonilta ja ROHM Semiconductorilta. Lisäksi 600-700 voltin SiC MOSFET -laitteiden hinnat laskevat nopeasti. Kaikissa uusissa sillatonta toteeminastaista PFC-topologiaa käyttävissä projekteissa saattaa siksi joutua arvioimaan SiC MOSFET -toteutusta.

SiC MOSFET -laitteita toimitetaan sekä 3- että 4-johtimisissa TO-247-koteloissa, mutta tässä tutkimuksessa keskityttiin 4-johtimiseen TO-247-koteloon, joka sisältää lisäksi niin sanotun Kelvin-liitännän. Kehittäjien arviointi paljasti jonkin verran suorituskyvyn vaihtelua sekä toiminnassa että kohinassa eri piirien välillä.

Jotkut piirit toimivat hyvin ja tuottivat lähes 99 prosentin PFC-hyötysuhteen hyvällä kytkennän suorituskyvyllä. Toiset tuottivat alkuun suhteellisen heikkoja kytkentäaaltomuotoja ja gene-roivat sen verran kohinaa, että se vaikutti suorituskykyyn. Yhdessä tapauksessa kohinan vaikutus suorituskykyyn oli pieni.

Testitulokset kertoivat hyvästä hyötysuhteesta, mutta kotelon lämpötila nousi 10 °C korkeammalle kuin vastaavissa laitteissa havaittu. Harmoninen kokonaissärö (THD) oli myös jopa 8 prosenttia suurempi. Lokidatan yksityiskohtainen analyysi osoitti, että tulovirran aaltomuoto oli vääristynyt: tulovirran AC-virta-jakson negatiivinen puoli oli hieman litistynyt.

Laitetoimittajien kanssa tehdyssä perusteellisessa tutkimuksessa tunnistettiin ilmiön perimmäinen syy: joidenkin SiC MOSFET -laitteiden portti-nielu-kapasitanssi (Cgd) voi olla suhteellisen suuri. Yhdistettynä matalaan kynnysjännitteeseen tämä ominaisuus voi altistaa MOSFETin ns. Millerin käynnistysvaikutuksille. Lisäksi sisäisistä kapasitansseista johtuva jännitteen kytkentä voi johtaa huonoon kytkentäaaltomuotoon ja ei-toivottuihin ristiinjohtumisen vaikutuksiin.

Onneksi tähän on lääke. Future Electronicsin suositus on tarkistaa SiC MOSFETin Cgd-luokitus ja hila-lähde-kapasi-tanssin (Cgs) suhde Cgd:een datalehdistä. Jos Cgd on suhteellisen suuri, saattaa kannattaa valita porttiohjain Miller-taso-lukitus-toiminnolla. Tähän esimerkiksi STMicroelectronicsin STGAP2SCM on sopiva tuote. Jos Cgs:n ja Cgd:n suhde on alhainen, on suositeltavaa lisätä Cgs:tä käyttämällä ulkoista kondensaattoria.

Eghamin osaamiskeskuksen GaNdalf-alustaan perustuvassa arvioinnissa (Millerin) tasolukitus-toimintoa käyttävä ohjain yhdistettynä Cgs-lisäkapasitanssiin paransi kytkentätehoa ja järjestelmän kokonaistoimintaa, mikä johti huomattavasti parantuneeseen hyötysuhteeseen, parempaan harmoniseen kokonaissäröön ja myös parempiin kytkentäaaltomuotoihin.

TUTKIMUS TUKEE SUOSITUKSIA

GaNdalf-alusta tarjoaa ihanteellisen perustan tutkia yksityiskohtaisesti sekä GaN- että SiC-laitteiden toimintaa suurella jännitteellä kytkettäessä. Future Electronicsin osaamiskeskuksen tutkijoiden toteuttama vertaileva tutkimus paljasti joitain tärkeitä käytännön tuloksia, joita tehojärjestelmien suunnittelijat voivat hyödyntää.

Erityisen selvää on, että pintaliitettävät kotelot, joissa on yläpuolinen jäähdytys, tarjoavat parhaat kokonaistulokset käytettäessä GaN HEMT -piirejä, joissa tehotasot ylittävät 1 kilowatin ja joissa ei haluta käyttää tuulettimen jäähdytystä.

GaNdalf-piirilevy osoitti myös, että piikarbidilaitteet ylletään hyötysuhteessa hyvin lähelle GaN HEMT -laitteiden lukemia, tehoa pienemmiksi, kun taas piikarbidipohjaiset MOSFETit ovat hinnaltaan houkuttelevia ja laajalti saatavissa.

Jotkut 4-johtimisissa TO-247-koteloissa olevat SiC MOSFET -piirit voivat kärsiä kohinaongelmista ja olla alttiita Miller-vaikutukselle, jossa Cgd on suhteellisen suuri. Monissa tapauksissa nämä ongelmat voidaan ratkaista käyttämällä ohjainta, jolla on aktiivinen tasolukitustoiminto, ja ulkoista Cgs-kapasitanssia kytkentäaaltomuotojen parantamiseksi.

 

Future Electronicsin David Woodcockin kirjoittama artikkeli löytyy uudesta ETNdigi-lehdestä. Sitä pääset lukemaan täällä.

ETNtv

Watch ECF videos

TekoÀlyn avulla robotteja voidaan ohjata puheella

ETN - Technical article

Generatiivisen tekoälyn vallankumous, joka tuo chatbotit asiakaspalveluun ja mahdollistaa älykaiuttimien kaltaiset laitteet, on vasta alkua. Sama teknologia, joka ymmärtää ihmisten puhetta, siirtyy nyt robotiikkaan, missä se auttaa kehittämään algoritmeja robottien liikkeiden ohjaamiseen ja politiikkojen toteuttamiseen tärkeiden tehtävien suorittamiseksi.

Lue lisÀÀ...

SOM-ratkaisut ovat lÀÀketieteellisen elektroniikan luotettava tulevaisuus

Lääketieteellinen elektroniikka on yksi nopeimmin kasvavista teollisuudenaloista. Väestön ikääntyminen, erityisesti länsimaissa, ja terveydenhuollon teknologioiden jatkuva kehitys pitävät yllä kovaa kysyntää ja ohjaavat alan tutkimus- ja tuotekehitystä, kirjoittaa Digi Internationalin OEM-ratkaisuista Euroopassa vastaava johtaja Ronald Singh.

Lue lisÀÀ...

LATEST NEWS

NEW PRODUCTS

 

NEWSFLASH

 SPONSORS

 

Etteplan supports customers cross industries in digitalizing their business from requirement specifications to solution development and implementation. With over 30 years of experience, Etteplan has the needed expertise to develop a wide range of industrial applications, from large established companies to start-ups. We deliver complete turn-key solutions containing cross-discipline know-how.

 

CN Rood offers technical solutions in the field of testing and measurement. We aim to remain leaders in that regard. Our customers are often not looking for a product, but for a solution, and we all have the drive to work on that solution. What we love to do most is to continually work on the latest developments in the field of testing and measuring equipment. Now and in the future.

 


EBV Elektronik was founded in 1969 and is one of the leading specialists in European semiconductor distribution. This success is based on the underlying company philosophy, which was developed a long time ago and which still applies today: operational excellence, flexibility, reliability and execution – with the goal of achieving the highest degree of customer satisfaction.

 

Tria is a world leader in the design and manufacture of embedded computing for OEMs. We offer a broad range of off-the-shelf modules to fully customized systems built for our customers. With a global footprint and deep in-house expertise, we support innovators from design to delivery.

congatec is a rapidly growing technology company focusing on embedded and edge computing products and services. The high-performance computer modules are used in a wide range of applications and devices in industrial automation, medical technology, robotics, telecommunications and many other verticals.

 

Mespek was founded in 1989. Our main products are embedded electronic modules, industrial PCs with peripherals, KVM and server management products, as well as wireless solutions for IoT applications.

 

Since 1985, Digi International Inc. (Digi) has been a pioneer in wireless communication, forging the future for connected devices and responding to the needs of the people and enterprises that use them.

 

CVG Convergens is an ICT services company specialized in embedded systems, smart connected products and ICT systems and processes for SME businesses. Our mission is to help our clients, our team, and the society to improve and thrive by providing reliable and sustainable solutions, services, and products by creative and efficient application of technology.

 

BCC Solutions Oy is a Finnish company that, in addition to expert services, offers comprehensive equipment solutions for data transfer and telecommunication networks, as well as their analysis, testing and measurement. We broadly represent the industry's leading brands.

 

Acal BFi has trusted expertise in advanced electronics for 50 years. If you’re in search of a trusted technology solutions partner, your search ends here. Our extensive knowledge, cutting-edge portfolio, and worldwide capabilities are at your service to bring the future into reality.

 





ECF template