Kun valitsee teholähdettää sovellukselleen, kannattaa olla silmä tarkkana. Joitakin powereita mainostetaan suurilla antotehoilla, jotka eivät käytännössä pidä paikkaansa.
Artikkelin kirjoittaja Stephen Dodson toimii suunnittelupäällikkönä XP Powerilla. Hänellä on elektroniikkasuunnittelijan tutkinto Chichesterin yliopistosta. Stephen aloitti elektroniikkauransa Weir Electronicsilla erilaisissa suunnittelu- ja myyntitehtävissä vuonna 1986. XP Powerin palvelukseen hän siirtyi toukokuussa 1998. Suunnittelupäällikkönä hän on toiminut viimeiset kolme vuotta. |
Teholähteista pitää saada jatkuvasti pienempiä, tehotiheydeltään parempia ja kustannuksiltaan alhaisempia. Nämä paineet ovat johtaneet siihen, että markkinoilla julkaistaan uusia tuotteita, joiden kokonaisantoteho ja mahdollinen tehonaleneminen on mitattu ihanneolosuhteissa.
Antotehon vähenemiskäyrät on useimmiten sijoitettu taitavasti tuote-esitysten loppuun, joilloin ne jäävät otsikoihin nostettujen korkeiden antoteholukujen varjoon. Joissakin tapauksissa nämä tiedot eivät ole esillä ollenkaan. Tällöin on syytä olla tarkkana, jotta sovellukseen tulee valituksi oikea teholähderatkaisu.
Ympäröivän lämpötilan nousu ja matalien syöttöjännitteiden taso määrittelee teholähteissä antotehon suhteellista alenemista. Näillä toimenpiteillä estetään komponenttien ylikuumeneminen ja mahdollinen termisten rajojen ylittyminen joka vaarantaa komponenttien toiminnan.
Lämpötilasta johtuva tehonalentuminen
Lähes kaikilla teholähteillä tapahtuu ympäröivästä lämpötilasta johtuvaa antotehon alentumista. Koteloon asennettavaksi suunnitelluisse tuotteisse tehonalentuminen alkaa tyypillisesti yli 50 asteen lämpötilassa. Tähän lämpötilaan saakka on mahdollista saada teholähteestä merkitty maksimaalinen antoteho. Kokonaisantoteho tyypillisesti laskee 50 prosenttia kuin ympäröivä lämpötila nousee 70 asteeseen. Eräiden valmistajien tuotteissa tehonalentaminen vaikuttaa myös alle 0 asteessa. Tämä perustuu niiden kykyyn käynnistyä alhaisissa lämpötiloissa.
Antotehon riippuvuus ympäröivästä lämpötilasta.
Ulkoisten teholähteiden tehonalentuminen alkaa yleensä 40 asteessa, koska nämä teholähteet eivät altistu lämpötilannousulle sovelluksen sisällä.
Viime aikoina tietyt valmistajat ovat alkaneet rajata maksimaalisen antotehon saamisen jo 40 asteeseen avoimissa teholähteissä. Näin ollen lähtöteho vähenee 50 prosentilla jo 60 asteen lämpötiloissa. Tämä johtuu komponenttien lämpötilan liiallisesta noususta 50 asteessa. Rajoitukset johtuvat lähinnä käytettyjen komponenttien ominaisuuksista, erityisesti liittyen niiden elinikään ja tuoteturvallisuuteen.
Vaikka tällaiset otsikoiden "haamutehot" tarjoavat usein näennäisesti korkeamman antotehon ja ensi näkemällä pienempiä tai edullisempia ratkaisuja, yli 40 asteen ympäristölämpötiloissa toimivaan lopputuotteeseen yhdistettäessä niiden kokonaisantoteho laskee vähintään 25 prosentilla. Toisin sanoen tuotteessa, jonka antoteho on otsikkotasolla 100 wattia, ei loppujen lopuksi tarjoa antotehoa kuin 75 wattia. Näin tällainen tuote ei ole rinnastettavissa sellaiseen poweriin, joka tuoteselostuksen mukaan tarjoaa 100 watin antotehon 50 asteen lämpötilassa.
Syöttöjännitteestä johtuva tehonalentuminen
Maailmanlaajuisesti käytettäväksi suunnitellut teholähteet toimivat normaalisti ns. universaalilla tulojännitealueella, tyypillisesti 90 – 265 VAC. Tuotteen, joka toimii laajalla tulojännitealueella, odotetaan toimittavan normien mukainen antoteho koko tulojännitealueella. Osaa tuotteista voidaan käyttää myös matalammalla tulojännitealueella, mutta siitä usein seuraa antotehon alentuminen 90-85 voltissa ja jossain tapauksissa jopa 80 volttiin asti. Tällaista esiintyy useimmiten alueilla, joissa verkkojännite on epävakaa.
Antotehon riippuvuus syöttöjännitteestä.
Viime vuosina on yleistynyt käytäntö joidenkin valmistajien kesken, jossa lisätään tuotteen kokonaisantotehoa tuoteselostuksissa ja muutetaan tulojännitealueeksi 100 tai jopa 115 volttia. Tehon aleneminen voi näin olla jopa 20 prosenttia kun toimitaan 90 voltin tulojännitealueella.
Toimimalla tällä tavalla saadaan helposti tuotteet näyttämään antoteholtaan tehokkaammilta sekä kustannustehokkaammalta ratkaisulta. Todellisuudessa, jos sovellus on tarkoitettu käytettäväksi maailmanlaajuisesti, tarvitaan itse sovelluksessa isompaa kokonaisantoteholuokan teholähdettä.
Tulojännitteen tehonalentumista käytetään lieventämään tulosuotimien, siltatasasuuntaimien ja PFC komponenttien ylikuumenemista varten kuin tulovirta kasvaa. Jotkut häviöt kasvavat virran suhteessa kun taas resistiiviset häviöt esimerkiksi EMC-kuristimissa kasvavat suhteessa virran neliöön.
Jos teholähde on tarkoitettu maailmanlaajuiseen markkinointiin, on huolellisesti varmistettava, ettei sovellus rasita suunnittelussa käytettyjä komponentteja ja näin vähennä tuotteen luotettavuutta ja käyttöikää.
Tapauksissa, joissa sekä lämmöstä että matalasta tulojännitteestä johtuva tehonalentuminen vaikuttavat yhdessä 40 asteen lämpötilassa, 100 watin teholähteen todellinen antoteho on vain 60 wattia 50 asteen lämpötilassa 90 voltin syöttöjännitteellä. Tässä tapauksessa on selvää, ettei tuotetta voida verrata tuotteeseen, jonka antoteho on täydet 100 wattia vastaavassa olosuhteessa.
Tehonaleneminen vaikuttaa myös jokaiseen komponenttiin erikseen, mikä on huomioitava sovelluksessa. Esimerkiksi kaikki komponentit voidaan rajata 80 prosenttiin niiden maksimista. Näin varmistetaan pitkä käyttöikä ja myös luotettavuus paranee merkittävästi. Jos sovelluksessa käytettyjen komponenttien tehonalenemisrajat ovat jääneet suunnittelussa huomioimatta, saattaa syntyä tilanne, jossa sekä käyttöikä että luotettavuus kärsivät merkittävästi.
Vaikka tuoteselostuksessa määritellään lämpötilan tai matalan syöttöjännitteen takia tehonalenemisen säännöt, niin teholähde itsessään ei rajaa koko antotehon käyttöä. Jos tuotteita käytetään näiden tehonalenemisen rajojen ulkopuolella, on todennäköistä että tuotteen luotettavuus, sen käyttöikä ja mahdollisesti jopa sovelluksen turvallisuus kärsii.
DC/DC-muuntimista johtuva tehonalentuminen
Lämpötilasta johtuvan tehonalenemisen lisäksi DC-DC muuntimissa on otettava huomioon myös kotelon lämpörajat. Muuntimet eroavat usein käyttäytymiseltään teholähteistä. Yleensä ne juotetaan suoraan piirilevylle ja ne käyttäytyvät kuten muutkin liitettävät komponentit sovelluksessa. Komponentit ja muu rakenne voivat estää ilmavirran kulkua ja siten heikentää laitteen jäähtymistä. Tämä voi aiheuttaa kotelon lämpenemisen yli sallitun, vaikka ympäröivä lämpötila pysyisikin määritysten rajoissa.
Minimoidaksemme ylilämpenemistä on hyvä tietää sovelluksen ympäröivän lämpötilan taso ja varmistaa, ettei muunninta sijoitetaan paikkaan missä sen suorituskyky vaarantuu. Muuntimien ympärillä pitäisi olla riittävästi tilaa, jotta varmistetaan johtuvan lämmön poisto ja ilmavirran esteetön kulku. Sovelluksen termisen arvioinnin tulisi sisältää mittauksia, joilla varmistetaan, etteivät termiset raja-arvot ylity.
Hyvänä tuote-esimerkkinä voidaan käyttää XP Powerin 200 W:n CCB200 teholähdesarjan tuotetta. Tuotteen suunnittelussa on kiinnitetty erityisesti huomiota niihin yksityiskohtiin, jotka voisivat heikentää teholähteen antotehoa. Lisäksi kiinnitettiin erittäin suurta huomiota korkean hyötysuhteen saavuttamiseksi koko syöttöjännitealueelle sekä asetettiin vaatimus, että teholähde toimii koko lämpötila-alueella konvektiojäähdytyksellä. Näin tuotteesta saadaan myös hiljainen.
Tuotteen hyötysuhdetavoitteeksi asetettiin 95 prosenttia ja sen kokonaisantotehoksi määriteltiin 200 wattia. Tuote haluttiin myös istuttaa tuttuun 3 x 5 tuuman teollisuusstandardikokoon. Tämän saavuttamiseksi toteutuksessa vaadittiin aivan uusia lähestymistapoja. Tuotteessa on termisesti aktiivisia komponentteja, joiden avulla CCB200 pystyy tuottamaan sen vaaditun kokonaisantotehon (200 W) jopa 70 asteen lämpötilassa sen koko tulojännitealueella (90 – 264 VAC) ilman lähtötehon alentumista.
Esimerkki korkean hyötysuhteen AC-DC teholähteestä – XP Powerin CCB200.