Monessa sovelluksessa haluttaisiin hyödyntää tekoälyä, mutta datan siirtäminen pilveen ja takaisin ei tule kysymykseen. Mutta miten voi tehdä hermoverkkolaskentaa mikro-ohjaimilla, joilla on vähän muistia ja laskentatehoa. Vastaus on TinyML.
Artikkelin kirjoittaja Eldar Sido on tuotemarkkinoinnin spesialisti Renesas Electronicsilla. Hän työskentelee Arm-pohjaisten mikro-ohjainten kehityksessä ja on erikoistunut tekoälyntoteutuksiin mikro-ohjaimilla. Eldarilla on nanoteknologian tutkinto Tokion yliopistosta. |
Neuroverkot ovat saaneet inspiraationsa aivoista ja neurotieteen terminologian (neuronien ja synapsien) käyttäminen hermoverkkojen selittämiseen on aina ollut suuri valituksen aihe neurotieteilijöille, sillä nykyiset hermoverkot ovat kaukana aivojen toiminnasta.
Nykyisen toisen sukupolven hermoverkkojen ja aivojen yleinen rakenne, neurolaskenta ja oppimistekniikat erosivat suuresti toisistaan. Tämä vertailu ärsytti neurotieteilijöitä niin paljon, että he aloittivat työskentelyn kolmannen sukupolven verkkojen parissa, jotka muistuttivat enemmän aivoja. Niitä kutsutaan piikittäviksi eli spiking-neuroverkoiksi (SNN), joiden laitteisto pystyy suorittamaan niitä eli neuromorfista arkkitehtuuria.
Piikittävät neuroverkot
SNN-verkot ovat erääntyyppisiä keinotekoisia hermoverkkoja (ANN), joiden toiminta muistuttaa enemmän aivoja kuin aiemmat hermoverkkorakenteet. Keskeinen ero on siinä, että SNN:t ovat spatiotemporaalisia neuroverkkoja, eli ne huomioivat toimintansa ajoituksen toiminnassaan. SNN-verkot toimivat erilaisten biologisten prosessien differentiaaliyhtälön määrittämillä piikeillä. Kriittisin yhtälö on laukaisu sen jälkeen, kun hermosolun kalvopotentiaali (eli ”laukaisukynnys”) on saavutettu. Tämä tapahtuu piikeillä, jotka laukaisevat kyseiseen neuroniin tietyissä aikajaksoissa.
Vastaavasti aivot koostuvat 86 miljardista laskennallisesta yksiköstä, joita kutsutaan neuroneiksi ja jotka vastaanottavat syötteitä muilta neuroneilta dendriittien eli haarakkeiden kautta. Kun syötteet ylittävät tietyn kynnyksen, hermosolu laukaisee ja lähettää sähköpulssin synapsin kautta. Synaptinen paino säätelee, kuinka laaja pulssi lähetetään seuraavaan neuroniin.
Toisin kuin muut keinotekoiset hermoverkot, SNN-neuronit laukaisevat asynkronisesti eri kerroksissa koko verkossa saapuen eri aikoina, jolloin perinteisesti informaatio etenee järjestelmän kellon sanelemana. SNN:iden spatiotemporaalinen ominaisuus ja piikkien epäjatkuva luonne tarkoittavat, että mallit voidaan jakaa harvemmin neuronien ollessa yhteydessä vain relevantteihin neuroneihin ja käyttämällä aikaa muuttujana, mikä mahdollistaa tiedon koodaamisen tiheämmin verrattuna perinteisten neuroverkkojen binäärikoodaukseen. Tämä johtaa siihen, että SNN-verkot ovat laskennallisesti suorituskykyisempiä ja hyötysuhteeltaan parempia.
Kuva 1. Perinteisten keinotekoisten neuroverkkojen ja SNN-verkkojen ero.
SNN-verkkojen asynkroninen käyttäytyminen sekä differentiaaliyhtälöiden suorittamisen tarve on laskennallisesti vaativa perinteisille laitteille ja uutta arkkitehtuuria oli kehitettävä. Tässä mukaan tulee neuromorfinen arkkitehtuuri.
Neuromorfinen arkkitehtuuri
Neuromorfinen arkkitehtuuri on aivojen toiminnasta inspiraation saanut ei-von Neuman-arkkitehtuuri, joka koostuu neuroneista ja synapseista. Neuromorfisissa tietokoneissa tietojen käsittely ja tallentaminen tapahtuu samalla alueella. Tämä helpottaa Von Neuman -arkkitehtuurin pullonkaulaa, joka hidastaa perinteisten arkkitehtuurien saavuttamaa maksimikapasiteettia, kun dataa joudutaan siirtämään muistista prosessointiyksiköihin suhteellisen hitailla nopeuksilla. Lisäksi neuromorfinen arkkitehtuuri tukee natiivisti SNN-verkkoja ja hyväksyy piikit syötteinä, mikä mahdollistaa tiedon koodaamisen piikkien saapumisajan, suuruuden ja muodon mukaan.
Näin neuromorfisten laitteiden avainominaisuuksia ovat niiden luontainen skaalautuvuus, tapahtumaohjattu laskenta ja stokastisisuus, koska neuronien laukaisussa voidaan nähdä satunnaisuutta. Tämä tekee neuromorfisesta arkkitehtuurista houkuttelevan niiden erittäin alhaisen tehonkulutuksen ansiosta, joka yleensä on kertaluokkia perinteisiä prosessointijärjestelmiä alhaisempi.
Kuva 2. Perinteinen Von Neumann -arckkitehtuuri ja neuromorfinen arkkitehtuuri.
Neuromorfisen laskennan markkinaennuste
Teknologisesti neuromorfisilla piireillä voi olla suuri rooli tulevalla reunalaskenna ja verkon päätelaitteiden AI-kaudella. Alan odotetun kysynnän ymmärtämiseksi on tarkasteltava tutkimusennusteita. Sheer Analytics & Insightsin raportin mukaan neuromorfisen laskennan maailmanlaajuisten markkinoiden odotetaan kasvavan vuosittain 50,3 prosentin vauhtia ja saavuttavan 780 miljoonaa dollaria vuoteen 2028 mennessä [1]. Mordor Intelligence puolestaan odottaa markkinoiden kasvavan 366 miljoonaan dollariin vuoteen 2026 mennessä, jolloin vuosikasvuksi tulisi 47,4 prosenttia [2].
Verkosta löytyy lisäksi paljon markkinatutkimuksia, jotka povaavat samanlaista kasvua. Vaikka ennusteluvut eivät vastaa toisiaan, yksi asia on selvä: neuromorfisten laitteiden kysynnän odotetaan kasvavan rajusti lähivuosina ja markkinatutkimusyritykset odottavat useiden teollisuudenalojen, kuten teollisuuden, autoteollisuuden, mobiili- ja lääketieteen ottavan neuromorfiset laitteet käyttöönsä erilaisissa sovelluksissa.
Neuromorfinen TinyML
Koska TinyML (pieni koneoppiminen) tarkoittaa koneoppimisen ja neuroverkkojen suorittamista rajatun muisti- ja laskentakapasiteetin laitteissa, kuten mikro-ohjaimissa, on luonnollinen askel sisällyttää neuromorfinen prosessoriydin TinyML-käyttötapauksiin, koska siitä seuraa useita selviä etuja.
Neuromorfiset laitteet ovat tapahtumapohjaisia prosessoreita, jotka toimivat nollasta poikkeavilla tapahtumilla. Tapahtumapohjaiset konvoluutio- ja pistetuotteet ovat laskennallisesti huomattavasti kevyempiä, koska nollia ei käsitellä. Tapahtumapohjainen konvoluutiolaskennan suorituskyky paranee entisestään, kun suodatinkanavissa tai kernelissä on suurempi määrä nollia. Tämä yhdessä aktivointitoimintojen kanssa, kuten Relu-funktion (rectified linear activation function) keskittyminen nollan ympärille, tarjoaa tapahtumapohjaisille prosessoreille ominaisen harvoin tapahtuvan aktivoimisen, mikä pienentää laskennan MAC-vaatimuksia.
Lisäksi neuromorfisten laitteiden prosessipiikkeinä voidaan käyttää rajoitetumpaa kvantisointia - kuten 1-, 2- ja 4-bittistä kvantisointia - verrattuna ANN-verkkojen perinteiseen 8-bittiseen kvantisointiin. Edelleen, koska SNN-verkot on sisällytetty laitteistoon, neuromorfisilla piireillä kuten Brainchipin Akida-siruilla on ainutlaatuinen kyky oppia jatkuvasti. Tämä ei ole mahdollista perinteisillä piireillä, koska ne vain simuloivat hermoverkon toimintaa Von Neumann -arkkitehtuurilla. Tämä johtaa siihen, että laskenta kuluttaa liikaa muistiresursseja, eikä se onnistu verkon reunalla TinyML-järjestelmällä.
Lisäksi neuroverkkomallin koulutuksessa kokonaisluvut eivät tarjoa tarpeeksi kattavuutta mallin tarkkaan kouluttamiseen, joten 8-bittinen harjoittelu ei ole tällä hetkellä mahdollista perinteisissä arkkitehtuureissa. Perinteisissä arkkitehtuureissa on toistaiseksi päästy muutamissa yksinkertaisissa koneoppimisalgoritmeissa (autoenkooderit, päätöspuut) käyttötapauksissa tuotantovaiheeseen reaaliaikaisessa analytiikassa, kun taas neuroverkkoja vasta tutkitaan edelleen.
Yhteenvetona neuromorfisten piirien ja SNN-verkkojen käytön edut päätelaitteissa:
- Erittäin alhainen virrankulutus (miljoonasta mikrojouleen päättelyä kohti)
- Pienemmät MAC-vaatimukset verrattuna perinteisiin neuroverkkoihin
- Pienempi parametrimuistin käyttö verrattuna perinteisiin neuroverkkoihin
- Edge-oppimisominaisuudet
Neuromorfiset TinyML-käyttötapaukset
Kaikesta huolimatta neuromorfisilla ytimillä varustetut mikro-ohjaimet voivat olla erinomaisia teollisuudessa niiden erityisen huippuoppimisen ominaisuuksiensa ansiosta. Näitä ovat:
- Jo käytössä olevien teollisuuslaitteiden poikkeavuuksien havaitsemissovelluksissa, joissa pilven käyttö mallin kouluttamiseen on tehotonta, joten tekoälylaitteen lisääminen suoraan moottoriin ja harjoittelu reunalla mahdollistaisi helpon skaalautuvuuden. Tämä siksi, että laitteiden ikääntyminen vaihtelee konekohtaisesti, vaikka ne olisivat samaa mallia.
- Robotiikassa robottikäsivarsien nivelet kuluvat ajan myötä, muuttuvat epävireisiksi (untuned) ja lakkaavat toimimasta tarpeen mukaan. Ohjaimen uudelleensäätäminen tai -virittäminen reunalla ilman ihmisen väliintuloa vähentää tarvetta soittaa ammattilaiselle, vähentää seisokkien tarvetta ja säästää aikaa ja rahaa.
- Kasvojentunnistussovelluksissa käyttäjän on lisättävä kasvonsa datasarjaan ja koulutettava malli uudelleen pilvessä. Muutamalla henkilön kasvojen kuvalla neuromorfinen laite voi tunnistaa loppukäyttäjän verkon reunalla tapahtuvan oppimisen avulla. Tämä mahdollistaa käyttäjien tietojen suojaamisen laitteella ja saumattomamman käyttökokemuksen. Tätä voidaan käyttää autoissa, joissa eri käyttäjillä on erilaiset mieltymykset esimerkiksi istuimen asennosta, ilmastoinnista jne.
- Avainsanojen havaitsemissovelluksissa voidaan laitteelle lisätä sanoja laitteella tunnistettavaksi. Tätä voidaan käyttää biometrisissa sovelluksissa, joissa henkilö lisäisi "salaisen sanan", jonka hän haluaa pitää suojattuna laitteella.
Kuva 3. Neuromorfisen oppimisen käyttötapauksia verkon reunalla.
Neuromorfisten päätelaitteiden erittäin pienen tehonkulutuksen ja parantuneen suorituskyvyn tasapaino tekee siitä sopivan akkukäyttöisiin, pitempää toiminta-aikaa vaativiin sovelluksiin. Näiden algoritmien suorittaminen ei ole mahdollista muilla pienitehoisilla laitteilla, koska niilläon rajallisesti laskentaresursseja. Tai toisinpäin: samaan prosessointitehoon yltävät high end -laitteet kuluttavat liian paljon virtaa. Käyttötapauksia ovat:
- Älykellot, jotka valvovat ja käsittelevät dataa itsenäisesti ja lähettävät vain relevantin, tarpeellisen datan pilveen.
- Älykkäät kamera-anturit, jotka tunnistavat ihmisiä loogisten komentojen suorittamiseksi. Esimerkiksi automaattinen oven avaaminen henkilön lähestyessä, kun nykyään se perustuu lähestymisanturien käyttöön.
- Älykäs eläinten seuranta tai valvonta esimerkiksi metsissä, joissa ei ole verkkoyhteyttä tai latausmahdollisuuksia. Halkeaminen havaitseminen valtameriputkien alla reaaliaikaisen tärinä-, näkö- ja äänidatan avulla.
- Infrastruktuurin valvonnasa neuromorfista mikro-ohjainta voidaan käyttää siltojen liikkeiden, tärinän ja rakenteellisten muutosten jatkuvaan seurantaan mahdollisten vikojen tunnistamiseksi.
Kuva 4. Erittäin vähän tehoa kuluttavia suuren suorituskyvyn käyttötapauksia.
Loppusanat
"Renesas on oivaltanut neuromorfisten laitteiden ja SNN-verkkojen valtavan potentiaalin lisensoimalla neuromorfisen ytimen Brainchipilta [3], joka on maailman ensimmäinen kaupallisten neuromorfisten IP-lohkojen toimittaja”, sanoi Renesasin IoT- ja infrastruktuuriliiketoimintayksikön johtaja Sailesh Chittipeddi.
Erittäin alhaisen hintaluokan piireissä yhtiö on lisännyt osaan sovelluksia Arm M33 -ohjaimen ja piikittävän hermoverkon, jossa on BrainChip-ydin. Lisenssi kattaa ohjelmiston, jolla järjestelmä saadaan toimimaan. [4]
Kun Renesas yrittää innovoida ja kehittää markkinoille parhaita mahdollisia mikropiirejä, yhtiö on innostunut näkemään, kuinka tämä innovaatio helpottaa elämää.
Viitteet
[1] “Neuromorphic computing market –industry analysis, size, share, growth, trends, and forecast, 2020-2028.,” sheeranalyticsandinsights.com. [Online]. Available: https://www.sheeranalyticsandinsights.com/market-report-research/neuromorphic-computing-market-21/ [Accessed: 23-Aug-2022].
[2] “Neuromorphic chip market growth, forecast (2022-27): Industry trends,” Neuromorphic Chip Market Growth, Forecast (2022-27) | Industry Trends. [Online]. Available: Neuromorphic Chip Market Growth, Forecast (2022-27) | Industry Trends (mordorintelligence.com) . [Accessed: 23-Aug-2022].
[3] “BrainChip's Akida set for spaceflight via NASA as Renesas Electronics America signs First IP agreement,” Small Caps, 23-Dec-2020. [Online]. Available: BrainChip’s Akida set for spaceflight via NASA as Renesas Electronics America signs first IP agreement (smallcaps.com.au). [Accessed: 23-Aug-2022].
[4] Arm battles RISC-V at Renesas. [Online]. Available: ARM battles RISC-V at Renesas - eeNews Europe. [Accessed: 23-Aug-2022].