Kosketusohjaus on vallannut kaikki laitteet, mutta kaikkiin paikkoihin se ei sovi. Usein elegantimpi käyttöliittymä onnistuu eleohjauksella ja pienellä, vähän tehoa kuluttavalla eleanturilla.
Artikkelin kirjoittaja Dan Jacobs toimii itävaltalaisella ams AG:llä tuotepäällikkönä optisten ratkaisujen divisioonassa. Hän työskenteli aiemmin Texas Advanced Optoelectronics Solutionsilla (TAOS), jonka ams osti vuonna 2011. Dan on kehittänyt värien aistimisen ja eleiden havaitsemisen komponentteja eri sovellusalueille. Hänellä on materiaalitieteiden insinöörin tutkinto Cornellin yliopistosta, joka sijaitsee Ithacassa New Yorkissa. |
Suunnittelijat kohtaavat monenlaisia haasteita valitessaan sopivia nappeja tai ohjaimia tavallisiin käyttöliittymiin.
Mekaaniset kytkimet ovat usein epäluotettavia ja niiden suojaaminen ympäristöltä vaatii paljon vaativaa suunnittelua. Sähköiset kytkimet, kuten kapasitiiviset tai resistiiviset napit tai näytöt välttävät mekaanista kytkimien ongelmat, mutta ne vaativat taas käyttäjän fyysistä kosketusta toimiakseen.
Optiset anturit sen sijaan helpottavat luotettavuusongelmia ja mekaanista monimutkaisuutta samalla, kun ne mahdollistavat ohjaamisen ilman kosketusta. Optisia antureita kuten läheisyyttä aistivia antureiat käytetään hyvin tavallisissa sovelluksissa kuten vesihanoissa tai saippuan annostelijoissa, mutta niiden todellinen potentiaali löytyy käyttäjä eleiden ymmärtämisessä, joiden avulla käyttäjäkokemus paranee ja järjestelmän monimutkaisuus vähenee. Tämän päivän eleanturit ovat ihanteellinen yhdistelmä toiminnallisuutta, suorituskykyä ja toteutuksen helppoutta, joilla käyttöliittymän hallinta voidaan mullistaa.
Hyvin toiminnallisten käyttöliittymien ominaisuudet
Toiminnalliset käyttöliittymät ovat intuitiivisia, luotettavia ja monipuolisia. Ollakseen intuitiivinen elekäyttöliittymän pitää vastata ennustettaviin fyysisiin liikkeisiin ja operoida vain tietyllä, ohjattavalla näkymäalueella. Ensimmäinen tarkoittaa, että laitetoimintoja ohjaavien käyttäjän eleiden täytyy fyysisesti vastata liikettä, jotta käytettäisiin samaan toimintoon toisissa olosuhteissa. Esimerkiksi sivun kääntäminen näytöllä pitäisi tapahtua samaan tapaan kuin kirjan sivun kääntäminen, eli pyyhkäisevällä liikkeellä.
Toinen vaatimus tarkoittaa, että käyttäjällä pitää olla tarkka käsitys siitä, milloin heidän liikkeensä vaikuttavat käyttöliittymään. Tätä on helpompi kontrolloida tietyn tyyppisillä eleantureilla. Esimerkiksi aktiiviset eleanturit synkronoivat lähetetyt pulssit ja mittaavat heijastunutta signaalia, mikä johtaa näkymän kontrollointiin ja rajoitettuun työskentelyetäisyyteen. Näkökenttä ja työskentelyetäisyys tuottavat rajatun tilan, jossa käyttäjän eleet vaikuttavat – mikä tahansa ele tämän alueen ulkopuolella jää anturin sivuuttamaksi. Kun käyttäjä on tietoinen tästä tilasta, hän voi tehokkaammin ja intuitiivisemmin käyttää käyttöliittymää.
Työtila on myös tärkeässä roolissa suuren luotettavuuden saavuttamisen kannalta. Elekäyttöliittymän eleiden luotettavuus voi olla sata prosenttia ilman mitään virheellisiä tulkintoja tässä rajatussa työtilassa.
Monipuolisuus
Hyvin toimiva elekäyttöliittymä on riittävän monipuolinen vastatakseen kaikkiin käyttäjän ohjauskomentoihin ja lisätäkseen toiminnallisuutta aiempia käyttöliittymätekniikoita laajemmaksi. Eleiden aistimisen edeltäjä löytyy läheisyysantureista (proximity sensor), jotka lisäävät järjestelmään tunnista- ja vapauta-tapahtumat. Tämän informaation avulla järjestelmä voi käynnistää ja pysäyttää tapahtumia: esimerkiksi automaattinen vesihana voidaan avata ja sulkea.
Eleanturit voivat lisätä tähän seuraavan tason monipuolisuuden tuottamalla järjestelmälle tietoa käyttäjän liikkeiden suunnasta.
Kuva 1. Mahdollisuus kahteen, neljään tai kahdeksaan kiinteään suuntaan.
Kuten kuvasta 1 näkyy, kahta kiinteää suuntaa (esimerkiksi vasen ja oikea tai ylös ja alas) voidaan käyttää hyvin monenlaisiin ohjauksiin kuten sivun kääntämiseen tai äänenvoimakkuuden säätämiseen. Neljä tai kahdeksan suuntaa ovat mahdollisia saman tyyppisillä antureilla ja ne mahdollistavat jo monipuolisempia toimintoja kuten äänenvoimakkuuden säädön tai kappaleen vaihdon radiossa tai musiikkisoittimessa. Ja jos halutaan yli kahdeksan liikesuuntaa, järjestelmä voi käyttää myös pyörivää liikettä, kuten kuvasta 2 näkyy.
Kuva 2. Mahdollisuus liikkua mihin tahansa suuntaan.
Esimerkiksi käyttäjä voi vierittää 2D- tai 3D-kuvaa näytöllä mihin tahansa suuntaan eleillä, jotka vastaavat niitä liikkeitä, joilla vastaavaa 2D- tai 3D-objektia liikuteltaisiin kädessä.
Suorituskykyiset standardit
Tämän päivän eleanturit ovat aiempaa luotettavampia ja monipuolisempia standardien suorituskykyvaatimusten ansiosta. Aktiivisten eleantureiden ”sweet spot” -kohta osuu siihen, että sormen tai käden liike tunnistetaan 10-20 senttiä anturin yläpuolella pienellä tehonkulutuksella.
Kompromissi työstentelyetäisyyden ja tehonkulutuksen välillä riippuu eniten anturin säteilytehosta ja signaali-kohinasuhteesta (SNR, signal-to-noise). Nykyisten anturien kohina on niin alhainen, että ne pystyvät toimimaan 10-20 sentin tunnistusetäisyydellä keskimäärin 5 milliampeerin tai sitäkin alhaisemmalla aktiivitilan virrankulutuksella.
Tämä tehonkulutus putoaa puoleen joillakin antureilla, kuten ams:n TMG3992-piirillä, jotka automaattisesti yhdistävät läheisyyden ja eleen tunnistuksen kahdeksi moodiksi. Kun objekti ei ole läsnä, TMG3992-anturi siirtyy monitorointitilaan, joka kuluttaa tehoa vain puolet normaalista. Havaitessaan käden ensimmäistä kertaa anturi lisää automaattisesti herkkyyttään saavuttaakseen korkean SNR-arvon eleen tunnistuksessa. Elesovelluksissa käyttäjä ohjaa laitetta vain pienen osan ajasta – tyypillisesti alle 10 prosenttia – mikä tarkoittaa, että TMG3992:n toiminto pienentää kokonaistehonkulutusta lähes 50 prosenttia.
Toteutuksen helppous
Uudemmat eleanturit ovat lupaavia työkaluja käyttäjille ja ne ovat myös käytännöllisiä kehittäjien kannalta helpon toteutettavuuden takia. Useimmat elektroniikkalaitteet hyödyntävät jo mikro-ohjaimia ja I2C-liitäntää, ja monet käytännölliset eleanturit liittyvät näihin helposti.
TMG3992-piirin kaltaisilla eleantureilla on täysin toimivat, I2C-yhteensopivat digitaaliset liitännät, eivätkä ne vaadi merkittävää prosessori- tai muistikaistanleveyttä toimiakseen. Näitä antureita ohjataan keskeytyksillä, mikä tarkoittaa että järjestelmän tarvitsee viestiä anturin kanssa vain kun tunnistettu tapahtuma havaitaan. Datan jatkuva imurointi anturilta kuluttaa tehoa ja prosessorin resursseja. Lisäksi näille antureille on olemassa valmiina referenssikoodia ja ajurityökaluja. Kaksi- ja nelisuuntaisia eletunnistussovelluksia voidaan toteuttaa hyvin suoraviivaisilla sähköisillä ja ohjelmistosuunnitteluilla. Mekaaninen suunnittelu on samalla tapaa yksinkertaista. Anturi toimii muovin tai lasin alla, jonka infrapunavalo läpäisee. Monet elektroniikkalaitteet on koteloitu muoviin, joka jo valmiiksi päästää läpi infrapunavaloa. Nämä materiaalit voidaan myös tuoda laitesuunnitteluun helposti ilman, että ne lisäävät monimutkaisuutta tai luotettavuusriskiä.
Uusia sovelluksia
Kosketuksettomat käyttöliittymät parantavat monia sovelluksia useilla tavoilla. Joillakin aloilla tai toiminnoissa on rajoituksia, jotka rajoittavat käytettävissä olevia ohjauksen ja näytön tapoja. Esimerkiksi hanskat – varsinkin paksut sellaiset – rajoittavat käyttöliittymän mahdollisuuksia. Kapasitiiviset kosketusnäytöt eivät toimi useimpien hansikkaiden kanssa, joten käyttäjä tarvitsee erikoishanskat voidakseen operoida laitteita. Eleanturit ylittävät nämä ongelmat, sillä ne toimivat kaikkien hansikkaiden kanssa. Tästä voidaan hyötyä monilla sovellusalueilla – teollisuussovelluksissa, kuten rakentamisessa, kemianteollisuudessa tai puhdastilatyöskentelyssä, sekä vapaa-ajalla kylmässä ilmassa ja ilmaurheilussa. Esimerkiksi hiihtäjä voi ohjata kameransa toimintoja eleillä tai ohjata älypuhelintaan samalla, kun kädet pysyvät lämpiminä.
Myös vedenalaiset sovellukset muodostavat monenlaisia haasteita. Veden alla kosketusnäytöt eivät toimi, mutta eleohjaus toimii. Vaikka vesi heikentää infrapunavaloa, mikä rajoittaa eleiden tunnistusetäisyyttä tai kasvattaa ratkaisun tehonkulutusta, tämä on pieni rajoitus verrattuna saavutettuihin etuihin. Esimerkiksi vedenalaisissa kameroissa käyttöliittymää voidaan merkittävästi yksinkertaistaa pienellä eleanturilla kuten TMG3992-piirillä. Se voi korvata useita mekaanisia nappeja pienemmällä, luotettavammalla käyttöliittymällä. Joissakin veden alla toimivissa älypuhelimissa eleohjauksen lisääminen tarkoittaa, että laitteella voidaan ottaa vedenalaisia kuvia ilman, että siihen lisätään erillisiä näppäimiä.
Käyttömukavuus
Älypuhelimissa on jo useita käyttöliittymämahdollisuuksia, joilla voidaan toteuttaa erilaisia ratkaisuja erilaisiin tehtäviin. On kuitenkin useita tilanteita – kuten ruuanlaitto ja liikunta – jolloin on tarve olla koskettamatta puhelinta jonkun toiminnon toteuttaakseen. Eleillä käyttäjä voi ohjata laitetta monin tavoin, kuten tarkistaa ilmoituksia tai selata niitä. Käyttäjä voi tunnistaa soittajan ja sen jälkeen valita jonkun useista vaihtoehdoista: hän voi soittaa takaisin kaiuttimen kautta, sivuuttaa puhelun ilman vastausta tai vastata siihen valmiilla tekstiviestillä. Joissakin puhelimissa on jo kosketukseton ohjaus läheisyysanturin myötä, mutta näissä on kyse yleensä yhden toiminnosta ja lisäksi vain ensimmäisestä askeleesta ennen kuin näyttöä pitää koskettaa. Kuten kuvasta 3 näkyy, eleanturit tekevät koko prosessista täysin kosketuksettoman.
Kuva 3. Täysin kosketukseton ohjauspaneeli.
Muita esimerkkejä siitä, miten eleanturit tekevät elämästä helpompaa ovat kodeista ja toimistoista löytyvät kytkimet ja termostaatit, joissa eleanturit voivat päivittää näiden yksinkertaiset käyttöliittymät. Yksi nelisuuntainen anturi voi integroida käynnistys-, sammutus- ja himmennystoiminnot kosketuksettomaan kytkimeen. Termostaateissa samanlainen eleanturin sovellus voi säätää lämpötilaa ja kytkeä erilaisia moodeja ja konfiguraatioita päälle ilman kosketusta.
Hygienian parantaminen
Kosketuksettomat käyttöliittymät auttavat myös estämään virusten ja bakteerien leviämisen ja sitä kautta vievät yhteiskuntaa hygieenisempään suuntaan. Kaikki, mihin ihminen koskettaa, voi saastua. Hyvä esimerkki on yleisen käymälän ovenkahva. Joissakin paikoissa arvokasta rakennusalaa tuhlataan, jotta saadaan toteutettua suojattu kulku ilman ovea kahdella seinällä. Mikäli tässä käytettäisiin eleanturia, tila saataisiin säästettyä muuhun käyttöön.
Anturit käymälän oven molemmilla puolilla voisivat avata oven yksinkertaisella alaspäin liikkeellä, samalla tapaa kuin ovenkahvasta väännetään. Eleanturi olisi tässä erityisen hyödyllinen, koska se vaatii tietyn palautteen – tietyn, määrätynmittaisen eleliikkeen – avatakseen oven. Läheisyysanturi tuottaisi liikaa ”vääriä positiivisia” aina, kun joku kävelee anturin ohi.
Vaikka julkinen hygienia on tärkeää, puhtaus sairaalaympäristössä on jopa kriittistä terveyden ja turvallisuuden kannalta. Sairaaloissa on monia instrumentteja ja esimerkiksi leikkaussalissa jokainen niistä tarvitsee käyttämisekseen jonkinlaista käyttöliittymää. Eleohjauksen myötä henkilökunnan ei tarvitsisi koskea näihin erilaisiin pintoihin, erityisesti niihin pintoihin, joihin muidenkin pitää koskea. Tämä voi olla vieläkin tärkeämpää sairaalaympäristössä, jonka ei tarvitse olla steriili. Sairaalassa voi olla paljon ihmisiä potilaista lääkäreihin, hoitajiin ja vierailijoihin. Joka kohta, josta koskettaminen poistetaan, pienentää tulehdusten tai epäpuhtauksien leviämisen riskiä.
Oikea tasapaino
Tämänhetkiset aktiiviset eleanturikomponentit tuovat sovelluksiin etuja, jotka korvaavat selvästi toteutuksen ja käyttöönoton aiheuttamat vaivat, mikä hyödyttää sekä laitevalmistajia että käyttäjiä. Tuotesuunnittelijoille eleanturit yksinkertaistavat järjestelmän suunnittelua ja lisäävät käyttöliittymien mahdollisuuksia kirjoa. Käyttäjien kannalta nämä anturit tuovat laajan valikoiman etuja moniin sovelluksiin, joissa parannukset vaihtelevat evolutionaarisista vallankumouksellisiin.
On olemassa tasapaino, joka saavutetaan parhaiten pienen tehonkulutuksen aktiivisilla eleantureilla kuten ams:n TMG3992-piirillä. Tavoite on lisätä uusia toimintoja käyttöliittymiin kivuttomasti tai avata niissä uusia mahdollisuuksia, jotka käyttäjät kokevat intuitiivisiksi ja helpoiksi omaksua.