ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Ajastus menee uusiksi pienissä laitteissa

SiTimen Titan-alustan MEMS-resonaattorit mullistavat 4 miljardin dollarin resonointikomponenttien markkinan. Ne ovat jopa seitsemän kertaa kvartsia pienempiä, mutta samalla kestävämpiä, energiatehokkaampia ja helpompia integroida. Älykelloista lääkinnällisiin implantteihin, IoT-laitteisiin ja Edge AI -sovelluksiin Titan avaa laitevalmistajille uusia mahdollisuuksia suunnitella aiempaa pienempiä, älykkäämpiä ja luotettavampia tuotteita.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Kapasitanssia ratissa – paras tapa tunnistaa kädet ohjauspyörällä

Tietoja
Kirjoittanut Gernot Hehn, ams
Julkaistu: 14.09.2016
  • Komponentit
  • Suunnittelu & ohjelmointi

Kehittyneet kuljettajan apuvälineet (ADAS, Advanced Driver Assistance Systems) lisäävät autolla ajamisen turvallisuutta, mutta joissakin tapauksessa ne saavat auton ajamaan itsestään. Tätä laki ei salli, joten autojen pitää tunnistaa, milloin kuljettajan kädet ovat ratilla. Tähän avuksi on tulossa älypuhelinten kosketusnäytöiltä tuttu kapasitiivinen aistiminen.

Artikkelin kirjoittaja Gernot Hehn on valmistunut Grazin teknisestä korkeakoulusta vuonna 2010. Hän työskentelee ams AG:llä edistyneiden prototyyppien ja demokorttien kehittäjänä eri anturituotteille, mukaan lukien kapasitiiviset ja induktiiviset anturit.

Autot ovat ihmeellisen turvallisia koneita. Niiden turvalliselle toiminnalle suurimman riskin aiheuttaa inhimillinen, ei mekaaninen elementti, eli kuljettaja. Yhdysvaltain viranomaisten mukaan 94 prosenttia onnettomuuksista aiheuttajaa ajoneuvon kuljettaja. Tämän takia autoteollisuus on esitellyt joukon erittäin hienostuneita toimintoja termin ADAS (Advanced Driver Assistance Systems) estääkseen kuljettajia tekemästä joitakin niistä vaarallisista virheistä, joihin he ovat taipuvaisia. Alkaen älykkäästä ohjauksesta ja elektronisista vakausjärjestelmistä ADAS-toiminnot ovat laajentuneet käsittämään kaistavaroituksia ja aktiivisia hätäjarrutuksia.

Autonvalmistajien tähtäimessä siintää tietenkin lopulta itseään ajava robottiauto. Mutta sitä odotellessa ADAS-yksiköiden täytyy antaa kuljettajalla kyky kontrolloida ja ohittaa automaatiotekniikka. Teoriassa kaistavahdilla ja älykkäällä vakionopeudensäätimellä varustettu auto toimii jo tietyissä tilanteissa robottiauton tapaan, esimerkiksi kun moottoritiellä kuljetaan pitkään yhteen suuntaan.

Jokainen kätensä ratista nyt irrottava kuski rikkoo tällä hetkellä lakia. Wienin vuonna 1968 päätetyn liikennesopimuksen 8. artiklan mukaan valtaosassa Eurooppaa täytyy joka autossa tai ajoneuvoyhdistelmässä olla kuljettaja ja lisäksi jokaisen kuljettajan täytyy kaiken aikaa hallita ajoneuvonsa.

Autonvalmistajien ADAS-järjestelmien täytyy tämän takia pystyä päättelemään, hallitseeko kuljettaja ajoneuvoa. Yksi parhaimpia menetelmiä tämän toteamiseksi on tarkistaa, piteleekö kuljettaja kiinni ohjauspyörästä. Auton täytyy tietää, irrottaako kuljettaja kätensä ratista.

Tätä on yritetty toteuttaa erilaisin keinoin: mekaanisella, resistiivisellä ja kapasitiivisella aistimisella. Näyttää siltä, että kapasitiivinen menetelmä on paras yhdistelmä käyttömukavuutta ja miellyttävyyttä. Kuten tämä artikkeli osoittaa, perinteiset mikro-ohjainpohjaiset kapasitiivisen aistimisen tekniikat, joita löytyy älypuhelimesta ja monista kotitalouslaitteista, eivät sovi autojen järjestelmien vaatimuksiin kovin hyvin.

Uusi, tässä artikkelissa kuvattu analoginen kapasitiivinen aistiminen välttää digitaalisiin kapasitiivisiin antureihin liittyvät ongelmat, mutta tuo luotettavan tunnistamisen kaikissa toimintaolosuhteissa.

Mekaanisen ja resistiivisen aistimisen puutteet

Käsien irrottamisen ratista voi aistia mekaanisesti sähköisen ohjaustehostimen eli EPS-komponenttien avulla. Sähkömoottoria, jonka päätehtävä on vahvistaa kuljettajan rattiin kohdistamaa kääntövoimaa, voidaan käyttää myös tuottamaan korkeataajuinen alhaisen amplitudin häiriösignaali ratissa. Tämä häiriö on liian heikko muuttaakseen auton kulkusuuntaa, mutta riittävän voimakas jotta se voidaan havaita ohjauskulman anturilla. Kun kuljettajan kädet ovat ratilla, ne vaimentavat ratin nytkähdystä. Häiriösignaalin vahvistuminen kuljettajan käsien takia voidaan luotettavasti havaita anturilla.

Vaikka tällainen järjestelmä on suhteellisen helppo toteuttaa minimaalisilla muutoksilla nykyisiin EPS-järjestelmiin – kunhan moottori ja anturi kykenevät tuottamaan ja tunnistamaan näin korkeataajuisia liikkeitä – on vaikea saada häiriösignaali riittävän voimakkaaksi ilman että se häiritsisi kuljettajaa. Käytännössä ratin liike näyttää aina tuntuvan kuljettajasta pienenä nytkähdyksenä, mikä on sekä häiritsevää että epämiellyttävää.

Resistiivinen järjestelmä ei tarvitse mekaanista häiriötä. Resistiivisen rattianturin rakentaminen vastaa resistiivisen kosketusnäytön rakentamista. Rakenne koostuu kahdesta johtavasta kalvosta, joiden välissä on vastustava erotin. Se sijoitetaan ratin kuorimateriaalin sisään. Tuotantolinjan lopulla kalibroidaan järjestelmän paine ilman kosketusta. Järjestelmän pitäisi tämän jälkeen aisti, milloin käden normaali paine kohdistuu rattiin. Jos rakenne on jaettu osiin, se voi aistia jopa kuljettajan käsien sijainnin ohjauspyörällä.

Valmistajan kannalta tämän menetelmän ikävä puoli on se, että ratin valmistusprosessi muuttuu. Anturimateriaali täytyy kiilata valetun alumiinikehyksen ja pinnoituksen väliin.

Suurempi merkitys on sillä, että kuljettajat eivät ehkä halua hyväksyä vaatimusta pitää ratista kiinni tietyllä minimivoimalla. Kuluttajat rakastavat kosketusnäytöllisiä älypuhelimiaan, jotka tarvitsevat vain kevyen kosketuksen aktualisoidakseen virtuaalisen napin tai kytkimen. Vaatimus painaa koko ajan on vanhanaikainen. Kuljettajat tuntuvat pitävän enemmän konseptista, jossa kosketus riittää havaitsemiseen.

Tämän mahdollistaa kapasitiivinen anturi, joka aistii sekä absoluuttisen kapasitanssin että muutoksen kapasitanssissa, kun toinen käsi koskettaa rattia. Mitään painetta tai puristusta ei tarvita.

Kapasitiivinen anturi koostuu johtavasta elektrodista, joka on sijoitettu ratin pintamateriaalin alle ja ajuri/ohjauspiiristä, joka tunnistaa muutokset elektrodin sähköisessä toiminnassa – mikä kertoo järjestelmälle kapasitanssin muutoksesta. Elektrodi voidaan valmistaa kuparikalvosta tai langasta, joka on liitetty taustamateriaaliin. Vaihtoehtoisesti joissakin luksusautojen rateissa on lämmityselementti, jota voidaan käyttää anturin elektrodina. Molemmissa tapauksessa laitetoteutus on yksinkertainen ja kuljettajan kokemus anturista luonnollinen ja miellyttävä.

Lisäksi järjestelmäsuunnittelijat ymmärtävät hyvin kapasitiivisen aistimisen toiminnan. Kosketusnäytöllisten älypuhelimien menestys on saanut komponenttivalmistajia kehittämään laajan valikoiman erilaisia kapasitiivisia kosketusohjaimia markkinoille.

Mikä sitten estää autonvalmistajia toteuttamasta kapasitiivista kosketusta rattiin käyttämällä näitä olemassaolevia ohjainpiirejä? Vastaus pitää sisällään kolme asiaa: EMC, lämpötila ja kosteus.

Rattia kiertävä elektrodi toimii kookkaana ja tehokkaana antennina, joka pystyy skeä lähettämään että vastaanottamaan häiriötä. Valitettavasti tämän päivän kosketusnäyttöjen ohjaimet edellyttäävt korkeataajuiden digitaalisen signaalin yhdistämistä antuirn elektrodiin. Tällainen signaali luo potentiaalisesti ongelmallisia häiriöitä, kun niitä lähetetään ratista ajoneuvon sisälle.

Ratin anturin täytyy myös kestää muutokset lämpötilassa. Ratin päällystemateriaalilla on tietty eristevakio huoneenlämpötilassa, joka asettaa perustan elektrodin aistimalle kapasitanssille. Tämä eristevakio riippuu kuitenkin lämpötilasta, ja järjestelmän pitää pystyä toimimaan autojen laajalla toiminta-alueella eli -40 asteesta aina +125 asteeseen.

Edelleen, ajoneuvon sisätilat ovat elävä ympäristö, jossa ihmisille sattuu vahinkoja. Lattekahvi voi kaatua ratille ajaessa. Kapasitiivisen anturin pitää siksi pystyä toimimaan oikein, vaikka ratti olisi läpimärkä.

Kännyköiden kosketusohjaimet toimivat jo aivan hyvin, vaikka näytöllä olisi vähän vesipisaroita, mutta ne pettävät kun koko pinta on nesteen peitossa.

Näiden syiden takia mikro-ohjainpohjaiset kosketusnäytöillä ja muissa kodin laitteissa käytettävät ratkaisut eivät sovi hyvin autosovelluksiin. On kuitenkin olemassa uusi kapasitiivisen aistimisen analoginen toteutus, joka tarjoaa ratkaisun yllä esitettyihin digitaalisia ohjaimia vaivaaviin ongelmiin.

Monimutkaisen impedanssin hyödyntäminen

Uuden analogisen ratkaisun tarjoaa ams:n Capsic-niminen ohjainperhe (ks. kuva 1). Koska se aistii monimutkaista impedanssia ratin elektrodissa, se suoriutuu menestyksellä vaihtelevista olosuhteista, kuten muuttuvasta lämpötilasta ja jopa kastumisesta kokonaan.

Kuva 1. ams:n Kapasitiivisen Capsic-anturin lohkokaavio.

Capsic-anturi toimii syöttämällä elektrodiin ohjaussignaalin, joka on tuotettu sisäisellä matalataajuisella siniaaltogeneraattorilla ja vahvistimella. Ohjaussignaalin jännitettä ja taajuutta kontrolloidaan huolellisesti, jotta varmistetaan se, että signaalin virta on suhteessa ohjaimen Sense-nastassa aistittuun monimutkaiseen impedanssiin. Ajurivirta voidaan esittää kaavana:

Kuten kaavasta näkyy, virralla on todellinen ja kuvitteellinen komponentti. Tämä voidaan ilmaista virran kahtena komponenttina: toinen on samanvaiheinen ajurin jännitteeseen nähden, toisen komponentin vaihe-ero on 90 astetta. Yleinen tapa esittää tämä on vaihekaavio (ks. kuva 2). Kokonaisvirta koostuu näiden kahden komponentin yhdistelmästä. Perinteinen piiriratkaisu mittaa vain kokonaisvirtaa, ei sen kahta komponenttia.


Kuva 2. Vaihekaavio näyttää Capsic-anturin ajurivirran kaksi komponenttia.

Capsic-anturin sisällä monimutkainen ajurivirta demoduloidaan kahtena polkuna, joista toinen on samanvaiheinen ajurivirran kanssa ja toisen vaihe-ero on 90 astetta. Näiden demodulaattoreiden tulos tuottaa resistanssin ja kapasitanssin arvon anturielektrodissa.

Tämä kyky erottaa resistanssi ja kapasitanssi mahdollistaa sen, että järjestelmä toimii luotettavasti ratin kapasitanssia mitatessaan. Miksi näin on?

Ennen kuin kuljettaja koskettaa rattia, anturi aistii tietyn impedanssin. Tämä liittyy hajakapasitanssiin, eli rattia ympäröivään kotelomateriaalin kapasitanssiin ja auton sisätilan ilmaan, ja osin myös johtumisesta auton runkoon (kosteuden takia). Ratin tila koskemattomana on kuvattu kuvassa 3.

Kuva 3. Ratin anturin yksinkertaistettu piirikuvaus.

Ratti on tässä vaiheessa itse asiassa resistori ja rinnan yksinkertaiseimman kondensaattorin eli levykondensaattorin kanssa, joka voidaan ilmaista kaavalla:

missä ε on eristevakio, A on ala ja d on etäisyys elektrodista.

Koska käden eristevakio on noin 60 kertaa korkeampi kuin ilman, ratin aistima kapasitanssi muuttuu merkittävästi heti, kun kuljettaja koskettaa rattia. Tämän muutoksen kapasitanssissa Capsic-anturi havaitsee välittömästi.

Mutta mitä tapahtuu, jos ratti kastuu? Tämä vaikuttaa sekä järjestelmän kapasitanssiin että resistanssiin, kun käsi vaikuttaa vain resistanssiin. Tämä tarkoittaa, että laitevalmistaja voi kirjoittaa ohjelmiston, joka hylkää – vääränä kosketuksena – minkä tahansa muutoksen kapasitanssissa, jonka yhteydessä esiintyy samanaikainen muutos resistanssissa. Sama periaate pätee muutoksiin kapasitanssissa lämpötilamuutosten yhteydessä.

Kuva 4. ams:n kapasitiivisen Capsic-anturin evaluointikortti.

Tämä osoittaa selvästi arvon, joka tulee Capsic-piirin kyvystä aistia monimutkaisen impedanssin molemmat osiot erikseen. Tätä kyvykkyyttä ei saa perinteisillä mikro-ohjainpohjaisilla kapasitiivisilla ohjaimilla, jotka pystyvät mittaamaan vain muutosta kokonaisjohtavuudessa. Samaan aikaan Capsic-ohjaimen harmiton, matalataajuinen siniaaltoajurisignaali generoi häviävän pienen määrän EMI-säteilyä, kun se on kytketty rattia kiertävään kookkaaseen elektrodiin.

Capsic-ohjain, jossa on mihin tahansa 8-bittiseen mikro-ohjaimeen liittyvä sarjaliitäntä, on helppo istuttaa rattiin. Sen avulla on mahdollista erittäin luotettavasti tunnistaa, ovatko kuljettajan kädet ratilla vai eivät. Tekniikka ei haittaa kuljettajaa, mutta se tuo vuonna 1968 laaditun Wienin sopimuksen vaatiman turvatoiminnallisuuden autoihin.

MORE NEWS

Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä

Forbesissa julkaistussa artikkelissa Nokian Cloud and Network Services -yksikön tuote- ja teknologiajohtaja Kal De varoittaa, että teleoperaattoreiden on hylättävä perinteinen, reaktiivinen kyberturvamalli. Nykyiset uhkat kuten tekoälyn kiihdyttämät hyökkäykset ja nopeasti lähestyvä kvanttilaskennan murros pakottavat siirtymään ennakoiviin, automaattisiin puolustusmenetelmiin.

Microchipin uusi piiri toimii älykkäänä virran vahtikoirana

Microchip on esitellyt kaksi digitaalista tehonvalvontapiiriä, jotka mittaavat kannettavien ja energiarajoitteisten laitteiden virrankulutusta kuluttamatta itse käytännössä lainkaan tehoa. Uudet PAC1711- ja PAC1811-piirit toimivat itsenäisinä, MCU:sta riippumattomina ”älykkäinä virran vahtikoirina”, jotka herättävät prosessorin vasta, kun järjestelmässä tapahtuu jotakin merkittävää.

Sähkömittareista tuttu radio laajenee uusille alueille

STMicroelectronics laajentaa tunnetun ST87M01-NB-IoT-radiomoduulinsa käyttökohteita älymittareista kohti yleisiä IoT-ratkaisuja. Yhtiö on esitellyt kaksi uutta versiota moduulista sekä päivitetyn kehitysekosysteemin, joiden avulla kehittäjät voivat tuoda kapeakaistaisen NB-IoT-yhteyden nopeasti osaksi logistiikan, teollisuuden, energiaverkkojen ja kuluttajalaitteiden sovelluksia.

Tekoälyrobotteja nopeasti Linuxilla

Avocado-käyttöjärjestelmäänsä sulautettujen laitteiden valmistajille kauppaava Peridio esitteli Embedded World North America -messuilla uuden Jetson-pohjaisen tekoälyä hyödyntävän robottidemon. Demo havainnollisti, miten sen Avocado OS -käyttöjärjestelmä ja laitehallinta-alusta lyhentävät sulautettujen AI-laitteiden tuotantovaiheeseen siirtymisen jopa kuukausista päiviin.

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Historiallinen käänne - polttomoottoriautot jäivät vähemmistöön

Sähköinen liikenne on siirtynyt uuteen aikakauteen sekä maailmalla että Euroopassa. Gartnerin tuoreen ennusteen mukaan maailman teillä liikkuu ensi vuonna yli 116 miljoonaa sähköajoneuvoa, kun taas TechGaged Research raportoi, että polttomoottorit ovat nyt virallisesti vähemmistössä Euroopan unionissa.

Winbond vie teollisuuden DDR4-muistit uudelle tasolle

Winbond on esitellyt uuden 8 gigabitin DDR4-muistin, joka nostaa teollisuus- ja sulautettujen järjestelmien perinteisen DDR4-teknologian aivan uudelle suorituskyky- ja tehokkuustasolle. Yhtiö valmistaa uutuuden omalla 16 nanometrin prosessillaan, mikä tuo pienemmän sirukoon, alhaisemman virrankulutuksen ja paremman signaalieheyden – ominaisuuksia, joita teollisuus edellyttää pitkän elinkaaren laitteistoilta.

Ultravakaa kellosignaali auttaa tunnistamaan GPS-häirinnän

GNSS-vastaanottimien suojautuminen sekä häirintää että harhautusta vastaan paranee merkittävästi, kun vastaanotin käyttää tavallista kvartsikelloa tarkempaa ja stabiilimpaa referenssikelloa. Tähän tarpeeseen vastaa SiTimen uusi Endura Super-TCXO ENDR-TTT, joka on suunniteltu erityisesti ilmailun, puolustuksen ja teollisuuden PNT-sovelluksiin.

Tämä vuosi kuuluu iPhonelle, ensi vuonna koko markkina kutistuu

Applen vahva vuosi nostaa älypuhelinmarkkinat takaisin kasvuun, mutta edessä siintää jälleen notkahdus. IDC:n tuoreiden lukujen mukaan maailmanlaajuiset älypuhelintoimitukset kasvavat vuonna 2025 yhteensä 1,5 prosenttia 1,25 miljardiin laitteeseen. Suurin selittävä tekijä on Applen ennätysvuosi: iPhone 17 -sarjan vetämä kysyntä nostaa yhtiön toimitukset 247,4 miljoonaan laitteeseen, mikä merkitsee 6,1 prosentin vuosikasvua.

Tässä pahimmat virheet piirikortin suunnittelussa

PCB-suunnittelun virheet eivät aiheuta vain pieniä häiriöitä. Ne voivat rikkoa toiminnallisuuden, pysäyttää sertifioinnit, syödä akut tyhjiksi, heikentää luotettavuutta tai jopa tehdä tuotteesta mahdottoman valmistaa. Näin muistuttaa suunnitteluasiantuntija John Teel, joka käy uudella videollaan läpi 21 yleisintä ja vakavinta virhettä, joita hän näkee toistuvasti sadoissa tekemissään suunnittelukatselmoinneissa.

Vakava haavoittuvuus React- ja Next.js-sovelluksissa – päivitä heti

React-tiimi on julkaissut erittäin vakavan tietoturvahaavoittuvuuden, joka koskee React Server Components -arkkitehtuuria sekä sen varaan rakentuvia kehitysalustoja, erityisesti Next.js-sovelluksia. Haavoittuvuus mahdollistaa täysin autentikoimattoman etähyökkäyksen, jonka avulla hyökkääjä voi suorittaa mielivaltaista koodia palvelimella.

Autojen sisävalaistukseen mullistava ratkaisu

DP Patterning ja ams OSRAM ovat esitelleet uudenlaisen ratkaisun, joka voi muuttaa autojen sisävalaistuksen suunnittelua merkittävästi. Yhtiöiden kehittämä konsepti esiteltiin ensi kertaa marraskuussa Productronica-messuilla Münchenissä.

Lataa laitteet auringon- tai sisävalosta

Belgialainen e-peas on esitellyt AEM15820-energiankeruupiirin, joka on suunniteltu hyödyntämään hybridiaurinkokennojen koko tehoalueen. Hybridikennojen etuna on kyky tuottaa energiaa sekä sisävalaistuksessa mikrowattitasolla että suorassa auringonpaisteessa useiden wattien teholla. Uusi PMIC pystyy käsittelemään tämän koko skaalan, mikä avaa tien käytännössä itseään lataaville kuluttaja- ja IoT-laitteille.

Tria tuo tehoa verkon reunalle DragonWing-moduuleilla

Avnetin entinen sulatuettujen ryhmä eli nykyinen Tria Technologies tuo ensimmäiset Qualcomm Dragonwing IQ-6-sarjaan perustuvat moduulit markkinoille. Uudet SM2S-IQ615- ja OSM-LF-IQ615-moduulit tarjoavat teollisuusluokan suorituskykyä ja modernia AI-kiihdytystä SMARC- ja OSM-moduuleina.

Suomalaisille kvanttialgoritmeille kysyntää maailmalla

Suomalainen kvanttialgoritmiyhtiö QMill laajentaa kvanttialgoritmitutkimuksen kansainvälistä yhteistyötä merkittävällä tavalla. Yhtiö on solminut strategisen tutkimussopimuksen kanadalaisen École de technologie supérieure (ÉTS) -yliopiston kanssa edistääkseen kvanttilaskennan käytännön sovelluksia ja validoidakseen algoritmeja todellisia teollisia haasteita varten. Sopimus vahvistaa entisestään suomalaisosaamisen kysyntää globaaleissa kvanttikeskuksissa.

Kiinnostavatko humanoidirobotit? Ensi viikolla ilmainen webinaari

Mitä pitää ottaa huomioon, jos suunnittelee ihmisen tavoin käyttäytyvää humanoidirobottia? Miten signaalit reititetään? Miten syötetään sähköä? Miten liittimet valitaan, jotta laite kestää siihen kohdistuvat rasitukset?

Minikokoinen kondensaattori yli kilovoltin SiC-sovelluksiin

Murata on esitellyt maailman ensimmäisen 15 nF:n ja 1,25 kilovoltin jännitekestolla varustetun C0G-tyypin monikerroskeramiikkakondensaattorin (MLCC), joka on pakattu poikkeuksellisen pieneen 1210-kokoluokkaan (3,2 × 2,5 mm). Uutuus vastaa suoraan SiC-MOSFET-tekniikan kasvavaan tarpeeseen, jossa korkeajännitteiset ja erittäin vähän häviävät komponentit ovat välttämättömiä resonanssi- ja snubber-piireissä.

LUMI-tekoälyhubi avautui Otaniemessä

LUMI-tekoälytehtaan hubiprojektin päällikkö Eeva Harjula (CSC) korostaa, että uusi Otaniemen hubi tuo tekoälyn mahdollisuudet konkreettisesti lähemmäs opiskelijoita, startup-yrityksiä ja pk-sektoria. - Tavoitteena on luoda kohtaamispaikka, jossa syntyy uusia ideoita ja yhteistyötä suomalaisen tutkimuksen, elinkeinoelämän ja yhteiskunnan hyväksi. Otaniemen hubi toimii LUMI-tekoälytehtaan päähubina” Harjula sanoo.

Wi-Fi 8 -piirien testaaminen voi alkaa

Rohde & Schwarz ja Broadcom ovat ottaneet ratkaisevan askeleen kohti seuraavan sukupolven Wi-Fi 8 -laitteita. Broadcom on validoinut R&S:n uuden CMP180-radiotesterin Wi-Fi 8 -piirien kehitys- ja tuotantotestaukseen, mikä tarkoittaa, että ensimmäisiä 802.11bn-siruja voidaan alkaa testata ja optimoida jo ennen standardin lopullista valmistumista.

Androidissa paikattiin kaksi vakavaa haavoittuvuutta

Google on julkaissut joulukuun Android-turvapäivitykset, jotka paikkaavat yhteensä yli sata haavoittuvuutta eri järjestelmäkomponenteissa. Merkittävimpiä ovat kaksi vakavaa zero-day-haavoittuvuutta, joiden Google arvioi olleen jo kohdennetun hyväksikäytön kohteena.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Onko muisti GenAI:n pullonkaula?

ETN - Technical articleKun suurteholaskennan (HPC) työkuormat monimutkaistuvat, generatiivinen tekoäly sulautuu yhä tiiviimmin moderneihin järjestelmiin ja lisää kehittyneiden muistiratkaisujen tarvetta. Vastatakseen näihin muuttuviin vaatimuksiin ala kehittää uuden sukupolven muistiarkkitehtuureja, jotka maksimoivat kaistanleveyden, minimoivat latenssin ja parantavat energiatehokkuutta.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • Nokia varoittaa: kyberuhkiin reagoiminen ei enää riitä
  • Microchipin uusi piiri toimii älykkäänä virran vahtikoirana
  • Sähkömittareista tuttu radio laajenee uusille alueille
  • Tekoälyrobotteja nopeasti Linuxilla
  • Onko muisti GenAI:n pullonkaula?

NEW PRODUCTS

  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
  • Kilowatti tehoa irti USB-tikun kokoisesta muuntimesta
  • Älykäs sulake tekee sähköautoista turvallisempia
 
 

Section Tapet