Power over ethernet -tekniikka eli PoE sopii erinomaisesti älyrakennusten ratkaisuksi. Tässä onsemin artikkelisarjan toisessa osassa pureudutaan tarkemmin tekniikan käytännön kysymyksiin.
Artikkelin kirjoittaja Bob Card toimii onsemi Americasilla edistyneiden ratkaisujen markkinointipäällikkönä. Artikkeli on ensimmäinen osa kaksiosaisesta sarjasta. |
Yhdysvaltain kansallisen palontorjuntaliiton (NFPA) mukaan sähkö- ja valaistuslaitteista aiheutuu kolmanneksi eniten tulipaloja. Tavallisimpia perussyitä ovat vanha tai viallinen johdotus, kytkentöjen ylikuormitus, irtoavat liitännät, vialliset sulakkeet, epävakaat sähkökuormat ja monet muut sähköön tai valaistukseen liittyvät ongelmat. Näiden ongelmien seurauksena voi syntyä ylikuumenemista ja siitä johtuvaa kipinöintiä, joka äärimmäisessä tapauksessa voi sytyttää tulipalon.
Verkkojännite kuljettaa kauas ja lähelle AC-tehoa kolmea eristettyä kuparijohdinta (jännitteinen, nolla ja maadoitus) pitkin. Jännitteinen johdin kuljettaa vaihtuvaa potentiaalieroa (120 V tai 230 V). Nollajohdin täydentää piirin ja sen arvo pidetään maapotentiaalissa tai lähellä sitä, tai se on nolla volttia. Maadoitusjohdin on suojausjohdin, jolla piiri maadoitetaan vikatapauksissa. Tiivistetysti voidaan todeta, että kun mukaan luetaan sulakkeet ja suojalaukaisimet maadoitusjohtimien, siis suojauksen, osuus verkon kaikista johtimista on kolmannes.
Kuva 1: Vasemmalla poikkileikkauskuva 2,5 mm2 verkkokaapelista ja oikealla samassa mittakaavassa oleva poikkileikkaus 23 AWG CAT6 -kaapelista (Lähde: Ethernet Alliance).
PoE eli Power over Ethernet -teknologia mahdollistaa lyhyillä enintään sadan metrin matkoilla tapahtuvan DC-tehon kuljettamisen ethernet-kaapelia pitkin tehoa syöttävän PSE-laitteen ja tehoa vastaanottavan PD-laitteen välillä. PoE-standardista riippuen enimmillään kahdeksalla kuparijohtimella voidaan siirtää DC-tehoa paluusuunta mukaan lukien. Lyhyesti sanottuna, PoE-teknologia ei kuluta lainkaan kuparijohtimia suojaustoimintoja varten. Filosofisesti ja arkkitehtuurin kannalta ajatellen PoE-standardissa suojaustoiminnot on siirretty verkkokaapelin osalta elektroniikan hoidettavaksi. Tästä on kaksi hyötyä: piipuolijohde on merkittävästi hinnaltaan edullisempaa kuin kupari ja piin käyttö mahdollistaa ohjelmoinnin. Kuparia ei voi ohjelmoida.
2-parinen vai 4-parinen
Ethernet käyttää RJ45-liitintä, jossa on kahdeksan kosketinta. Ne on jaoteltu neljään erilliseen differentiaalipariin (Kuva 2). 10BASE-T (10 Mb/s) ja 100BASE-TX (100 Mb/s) verkoissa ainoastaan kaksi neljästä parista on käytettävissä datansiirtoon, jolloin kaksi jää käyttämättömäksi. Gigabitin Ethernet (1 Gb/s) -verkoissa kaikki neljä paria ovat käytettävissä datansiirtoon.
Hyödyntämällä olemassa olevaa 10/100/1000 Ethernet -infrastruktuuria IEEE 802.3af (tunnetaan nyt PoE:na), joka tuottaa 350 mA/pari, enimmillään 57 V, ja IEEE 802.3at, joka tuottaa 600 mA/pari, enimmillään 57 V (tunnetaan PoE 1:nä) jakavat tehoa käyttäen noita kahta käyttämätöntä paria kahdessa vaihtoehtoisessa tilassa; vaihtoehdossa A tai B:
- Vaihtoehdossa A (PSE) tai tilassa A (PD) teho siirtyy pareissa 2 ja 3
- Vaihtoehdossa B (PSE) tai tilassa B (PD) teho siirtyy pareissa 1 ja 4
Kun taas IEEE 802.3bt (tunnetaan PoE 2:na) toimii neliparisena käyttäen kaikkia neljää paria tuottamaan 960 mA/pari, enimmillään 57 V. Tämä merkitsee, että PSE-laite pystyy tuottamaan tehoa 90 wattia.
Kuva 2: 2- ja 4-parisen tehonsyötön vertailua.
IEEE 802.3bt (90 W) -luokitus
Ethernet Alliance jakaa standardissaan määrittelemät neljä tyyppiä kuvassa 3 esitetysti edelleen kahdeksaksi erilliseksi luokaksi. Tehoa syöttävissä PSE-laitteissa jokainen PoE 2 -luokka (5-8) muodostaa 15 W:n viipaleen kun taas jokainen PoE 2 -luokka muodostaa 11 W:n viipaleen tehoa vastaanottavalle PD-laitteelle. Luokkien edelleen jakaminen kutakin tyyppiä kohden optimoi moniporttisen PSE-laitteen suorituskyvyn tuottaa erisuuruisia tehonsyöttöjä liitetyille PD-laitteille, etenkin kun liitettävien PSE-porttien määrä kasvaa.
Kuva 3: IEEE 802.3bt -luokitus.
IEEE 802.3af/at/bt:n mukaiset tehon tuottamisen vaiheet
PoE:n mukainen tehonsyötön tuottaminen PSE- ja PD-laitteiden välillä tapahtuu viiden erillisen vaiheen kautta kuten kuvassa 4 esitetään.
- Vaihe 1: Tunnistaminen
- Vaihe 2: Luokittelu
- Vaihe 3: Käynnistäminen
- Vaihe 4: Toiminta
- Vaihe 5: Katkaisu
PSE-laitteessa on Rsense-vastus kytkettynä sarjaan paluuvirtatiehen mittaamassa kaikkia PD-laitteella esiintyviä laskevia virta-arvoja. PD-laitteella on myös 25 kilo-ohmin alasvetoluokitusvastus, jonka tehtävänä on suorittaa PSE-laitteen tunnistaminen.
Kuva 4: PoE-standardin mukaiset tehon tuottamisen vaiheet (Lähde: Ethernet Alliance).
Vaihe 1. Tunnistaminen
Kun PSE- ja PD-laite liitetään yhteen ethernet-kaapelilla, PD-laite jakaa 25 kilo-ohmin alasvetoresistanssin (kuvassa 4 oikealla) PSE-laitteelle. Tämän jälkeen PSE suorittaa kaksi virtamittausta 500 ms:n aikaikkunassa:
1) valitse V 2,8 V ja mittaa I
2) valitse V 10 V ja mittaa I
Laskemalla ΔV/ΔI, kun PSE:n mittaukset ovat 19 kilo-ohmista 26,5 kilo-ohmiin, PSE hyväksyy onnistuneen tunnistamisen. Muussa tapauksessa PSE hylkää tunnistamisyrityksen. Erillisten mittausten suorittamisen etuna on se, että mikä tahansa ympärillä oleva kohina (ärsyke) on mukana molemmissa mittauksissa, jolloin sen vaikutus eliminoituu (yhteismuotoinen vaimennus).
Vaihe 2. Luokittelu
Luokitteluvaiheessa PD-laite esittää pyynnön luokittelun hyväksymisestä tai tehonsyöttövaatimuksista PSE-laitteelle. Luokitteluvaihe jakautuu viideksi luokitustapahtumaksi tai aikaväliksi kuvassa 5 esitetyn mukaisesti.
1) Luokan hyväksyntä 0: 1-4 mA
2) Luokan hyväksyntä 1: 9-12 mA
3) Luokan hyväksyntä 2: 17-20 mA
4) Luokan hyväksyntä 3: 26-30 mA
5) Luokan hyväksyntä 4: 36-44 mA
Kuva 5: PD:n tuottama luokkien hyväksyntä.
Tässä kuvassa on esitetty mikä luokan hyväksyntä (rivi) vaaditaan minkäkin luokkatapahtuman (kolumni) aikana PD-luokan (1-8) tunnistamista varten. Esimerkiksi luokan 7 PD-laite tuottaa 40 mA luokkatapahtuman 1 aikana, 40 mA luokkatapahtuman 2 aikana ja 18 mA luokkatapahtumien 3-5 aikana. PSE-laite mittaa PD-laitteen virta-aleneman jokaisella aikavälillä saadakseen selville PD-luokan.
PSE-laitteen tehtävänä on aikaansaada kuvassa 6 esitetyt jännitteet, kun taas PD-laitteen tehtävänä on muodostaa alemmat viisi virtatasoa, joita nimitetään luokkahyväksynnöiksi.
Kuva 6: Luokkahyväksynnät ja virtatasot.
Automaattiluokka
Kuten kuvasta 5 nähdään luokkatapahtuma 1 kestää pidempään kuin muut luokkatapahtumat. Tämä on ainutlaatuinen 802.3bt:n piirre, jota ei ole 802.3at:lla eikä 802.3af:llä. Jos myös PD on 802.3bt-yhteensopiva, PD voi muuttaa luokkahyväksynnän 0 (1-4 mA) 81 millisekunnissa luokkatapahtumaksi 1, jolloin 802.3bt-mukainen PSE saa tiedon, että PD-laite on myös 802.3bt-mukainen ja tukee automaattiluokkaa.
Kun PD-laite kytketään päälle, PD:n käytettävissä on enimmäisteho noin 1,2 sekunnin ajan. PSE mittaa PD:n tehoa ja lisää siihen tietyn marginaalin, jolloin tuloksena on PSE:n tuottama uusi optimoitu tehotaso.
Automaattiluokka optimoi PSE:n tehon jakautuman. Esimerkiksi jos PD:n vaatima suurin teho toiminnan aikana on 65 wattia, sen pitää ilmaista itsensä luokan 8 laitteena PSE:lle saadakseen varmistettua itselleen 65 watin tehonsyötön. Ilman automaattiluokkaa PSE saattaisi jakaa 90 wattia varmistaakseen, että PD saa 65 wattia. Automaattiluokkaa käyttäen PSE lukee tarpeeksi vain 66,5 wattia (lyhyt kaapelipituus) ja lisää marginaaliksi 1,75 wattia, jolloin sen jakama teho on 68,25 wattia. Tällöin tehoa säästyy 21,75 wattia eli noin 25 prosenttia. Vaikkei tämä kuulostaisi kovin merkittävältä ensi alkuun, kuitenkin jos PSE-kytkimessä on kahdeksan 802.3bt-porttia, automaattiluokka pystyy optimoimaan kutakin porttia (eri kaapelipituuksilla) ja kokonaistehon säästöissä päästäänkin jo satoihin watteihin.
Vaihe 3: Käynnistäminen
Käynnistysvaiheessa PSE-laite rajoittaa käynnistyssysäysvirran 450 milliampeeriin luokille 1-4 ja 900 milliampeeriin luokille 5-8.
Käynnistysvaiheessa PD-laite rajoittaa kuormitusvirran 400 milliampeeriin luokille 1-6 ja 800 milliampeeriin luokille 7-8.
Vaiheet 4-5: Toiminta, katkaisu ja MPS
MPS (Maintain Power Signature) on vikatoiminto, jossa PD vaimentaa PSE:ltä tulevia jaksollisia virtapulsseja ilmoittaakseen PSE:lle, että PD ei ole kytkeytynyt irti. Ellei PSE ole vastaanottanut PD:ltä tulevaa MPS-signaalia 400 ms:n kuluessa, silloin PSE:n täytyy katkaista tehonsyöttö PD:lle.
IEEE 802.3bt PD-sovelluksen lohkokaavio
Kuvassa 7 on esitetty tyypillinen 802.3bt-sovelluksen piirikaavio PD-laitteelle. Katsottaessa vasemmalta oikealle muuntajat AC-kytkevät ethernet 10/100/100 -dataa lähellä olevaan prosessoriin. Kokoaaltotasasuuntaus suoritetaan GreenBridge 2:lla, jolloin tehoa kulutetaan vähemmän kuin tavanomaisessa piidiodisillassa. Onsemin NCP1095 (nasta 7) toimii 25 kilo-ohmin alasvetovastusilmaisimena, kun nastat 2 ja 3 määrittävät PD:n luokan mukaiset tehovaatimukset (vastusarvot) ja jotka välitetään PSE:lle liittämisen jälkeisessä luokittelutapahtumassa. Nastat 6, 8, 9 ja 10 ohjaavat kollektiivisesti sysäysvirtaa ja ylivirtasuojausta (OCP) ulkoisen Rsense:n ja ohitushilan avulla. Kolmebittinen tiedonsiirto oheisprosessoriin tapahtuu nastojen 13, 15 ja 16 kautta. Nastan 4 PGO kautta annetaan ilmoitus seuraavalle DC/DC-muuntimelle, kun teholähtö on riittävä. Nasta 4 sallii NCP1095:n vastaanottaa tehoa paikallisesta lisäteholähteestä, kun taas nasta 6 ohjaa automaattiluokkaa, joka on 802.3bt:n uusi ominaisuus.
Kuva 7: 802.3bt-sovelluksen piirikaavio.
Onsemin valikoimissa on myös NCP1096-ohjain, jossa sekä ulkoinen fetti että Rsense on integroitu ohjainpiiriin.
Piille ohjelmointi
Sulakkeet, suojalaukaisimet ja maattojohtimet ovat suhteellisen yksinkertaisia laitteita ehkäisemään sähköpaloja, erityisesti verrattuna IEEE 802.3bt:n tarjoamiin ominaisuuksiin. Sen tarjoamat tehotalousominaisuudet, kuten luokittelu, automaattiluokka, sysäysvirta ja MPS, ovat vailla vertaa. Esimerkiksi sähköverkkojen tapauksessa seinissä ja katoilla piileksivät jyrsijät saattavat aiheuttaa yllättäen sähkötulipaloja. Sitä vastoin, jos PD-laite ei muodosta MPS-signaalia PSE-laitteelle 400 millisekunnin välein, PSE automaattisesti lopettaa tehonsyötön PD:lle.
On helposti ajateltavissa, että koodaamalla PSE havaitsemaan yllättäviä katkoksia ja ilmoittamaan niistä varoituslipulla IT-osastoa voidaan potentiaalisesti estää onnettomuuksia kuten rakennuspaloja. Luokittelun ja automaattiluokan ansiosta kuormalle voidaan älykkäästi syöttää juuri sen tarvitsema määrä tehoa. Tämä on erittäin turvallinen ja tehokas tapa jakaa tehoa. Kuten aikaisemmin on jo mainittu, pii on huomattavasti edullisempaa kuin kupari ja piitä voidaan ohjelmoida mutta kuparia ei.