Esineiden internet (IoT) on hyötynyt merkittävästi kahdesta vallalla olevasta trendistä: langattomasta tekniikasta ja vähän tehoa kuluttavasta elektroniikasta. Johdoista riippumattomuus ja kyky toimia merkittävästi pienemmillä paristoilla mahdollistaa yhä useampien erilaisten laitteiden liittämisen toisiinsa ja niiden sijoittamisen mitä erilaisimpiin paikkoihin. IoT-markkina tulee todennäköisesti kasvamaan ja leviämään laajemmalle kuitenkin vielä nopeammin, kun käyttöön tulevat laitteet, jotka pystyvät keräämään talteen omaa energiaansa.
Artikkelin kirjoittaja Tristan Cool työskentelee Silicon Labsilla teollisuuden tuotteiden markkinointipäällikkönä. |
Langattomuuden ansiosta on mahdollista käyttää tiettyjä laitteita yhä useammissa paikoissa. Turvakameroita on pitkään liitetty johdoilla verkkoihin, mutta langattomuus on tehnyt mahdolliseksi asentaa niitä mitä erilaisimpiin paikkoihin. Omaisuuden jäljittämiseen ja kuljetusten tarkkailuun perustuva teollisuudenala olisi jäänyt syntymättä ilman paristopohjaisen langattoman tekniikan olemassaoloa.
Eräät tuotteet kuten kotitalouksien ovikello-kamerayhdistelmät eivät olisi ollenkaan niin suosittuja elleivät ne olisi langattomasti toimivia ja paristokäyttöisiä.
Pariston käytettävyys
Paristot ovat kannettavia energian lähteitä, mikä tekee niistä äärettömän käyttökelpoisia. Vuosikymmenten ajan elektroniikan komponenttien koon jatkuva pienentyminen on myös vähentänyt niiden tehontarvetta. Tuotteet, jotka aiemmin vaativat toimiakseen useita suhteellisen isoja D-kennoja, toimivat nyt hyvin AA- tai AAA-paristoilla. Jotkut noista voivat toimia pitkiä aikoja nappiparistoilla.
Monet edellä mainituista tuotteista ovat tärkeässä osassa IoT:ssä: aktiivisuusrannekkeet, älykaiuttimet, paikkailmaisimet, liikenteen valvontajärjestelmät sekä edellä mainitut kamerat ja ovikellot.
Mutta paristot tyhjenevät ja sen jälkeen niistä on päästävä eroon – kierrättämällä tai hävittämällä.
Pariston haittapuolia
Yhdysvalloissa myydään joka vuosi viitisen miljardia paristoa arvioi maan ympäristöviranomainen EPA, jonka vastuulla on muodostuvan kiinteän jätteen ja mahdollisten yllättävien jäteongelmien seuranta. Eri lähteiden mukaan Euroopassa myydään vuosittain kahdeksan miljardia paristoa. Tästä voidaan päätellä, että useita miljardeja kuivaparistoja jää pois heitettäväksi joka vuosi.
Lähes kaikentyyppiset paristot sisältävät myrkyllisiä materiaaleja, joten paristojen kierrättäminen ei ole kovin helppoa ainakaan edulliseen hintaan ja näin ollen paristojen maailman laajuinen kierrättäminen on vaikeasti järjestettävissä. Esimerkiksi vain noin puolet hylätyistä paristoista saadaan kierrätettyä Euroopassa yhden arvion mukaan. Jätteiden ja saasteiden nykyiset määrät ovat kestämättömällä tasolla.
Ja samaan aikaan maailmalla otetaan käyttöön aina enemmän IoT-laitteita. Vuoteen 2022 mennessä käyttöön oli otettu 14,4 miljardia IoT-laitetta, ilmenee IoT Analytics -tutkimuslaitoksen kokoamista tiedoista ja sen ennuste on, että määrä tuplaantuu vuoteen 2027 mennessä. Niin koti- kuin teollisuuskäytössä olevien IoT-laitteiden uusimiskustannukset ovat kasvussa samoin kuin tarvittavien toimenpiteiden määräkin. Eräissä uusimmissa ja kunnianhimoisimmissa IoT-sovelluksissa on tarkoitus käyttää valtavan kokoisia anturimatriiseja valvomaan monenlaisia pyrkimyksiä maataloudesta teollisuusautomaatioon.
Kuva 1: Globaali IoT-laitteiden kasvuennuste (lähde: IoT Analytics).
Kuva 2. Energiankeruuta hyödyntävien järjestelmien markkinakehitys Yhdysvalloissa (lähde: Grandviewresearch).
Energiankeruu
Edellä kuvattujen IoT-laitteiden voisi odottaa vaativan paristotehoa, mutta onkin osoittautunut, että monet niistä eivät kuluta sitä ollenkaan. Jotkut antureista tarvitsevat toimiakseen vain hyvin heikon virtasyötön, jota on saatavissa ympäristöstä vapaasti.
Näissä tapauksissa houkutteleva vaihtoehto on energian keräily ympäristöstä. Peruskonseptina on kerätä energiaa joistakin luonnonilmiöistä, joissakin tapauksissa useasta energialähteestä ja muuntaa tuo energia sähköksi.
Määritelmän mukaan aurinko- ja tuulienergia lasketaan energiakeräilyksi. Molemmista energiamuodoista on saatavissa megawattien tehoja, mutta kaukana verkon reunoilla olevien IoT-laitteiden tarve on milliwattien tai mikrowattien luokkaa, mikä on tuotettavissa monia muitakin fysikaalisia ilmiöitä hyödyntämällä.
Kuva 3. Energiankeruun eri lähteet.
Energiankeruun muotoja
Aurinkosähkö (PV) tulee olemaan varma vaihtoehto hyvin vähän tehoa kuluttavissa IoT-laitteissa. Perinteiset PV-kennot, joita on käytössä aurinkopaneeleissa, pysyvät yhtenä vaihtoehtona, mutta kehitystyön alla on myös vaihtoehtoisia PV-tekniikoita, joista osa perustuu fotosynteesiä jäljitteleviin valmistettuihin materiaaliseoksiin. Nykyaikaisten PV-kennojen tehotiheydet ovat parantuneet ja ne kykenevät lataamaan niin sisällä kuin ulkona olevan ympäristön valon vaikutuksesta paristoja tai superkondensaattoriparistomoduuleja.
Pienet lämpötilaerot saadaan käyttöön termosähköisillä generaattoreilla, joilla kerätään mikrowatteja mistä tahansa energialähteistä, joita löytyy kaikkialta niin teollisuuslaitteista kuin ihmiskehosta. Joissakin sovelluksissa voidaan lisäksi hyödyntää läsnä olevaa AC-värähtelyä osana energian keräilyä!
Pietsosähköiset materiaalit synnyttävät energiaa muotoa muuttaessaan. Sovelluksissa kuten moottoriajoneuvoissa, joissa fyysinen liike pysyy lähes vakiona, voidaan kerätä tällä tavoin energiaa. Älykotien ja -rakennusten valaisinkytkimissä hyödynnetään tällaista pietsokineettisen energian keräilyä, minkä monet valmistajat ovatkin lisänneet osaksi liikuteltavien paristottomien kytkimien tarjontaansa.
Muita käytettävissä olevia energian keräilyn tekniikoita ovat innovatiivisimpien yritysten käyttämät sähköiseen ja magneettiseen induktioon perustuvat verrattain suuret sähkökentät, joista kerätään energiaa anturien ja radioyhteyksien tarpeisiin kaukokohteissa.
Ympäristön energia
Erittäin vähällä energialla toimivien IoT-laitteiden valmistajat, jotka etsivät keinoja toteuttaa paristottomia ratkaisuja, ovat kiinnostuneita energian keräilytekniikoista osittain siksi, koska kyseisille laitteille ei ole olemassa tehonsyötön infrastruktuuria.
Entä jos tuollainen infrastruktuuri olisikin olemassa? Jotakin sellaista kuin johdottomien älypuhelimien latauksessa käytetään, kuten Qi, jonka kantamat olisivat metrejä senttimetrien sijaan? Pienten tasasuuntaavien antennien (suunta-antennit) helppo saatavuus on myötävaikuttanut siihen, että on ryhdytty selvittämään langattomien tehonsyöttömenetelmien standardoinnin mahdollisuuksia.
Kuva 4. Energiaa voidaan kerätä hyvin monista lähteistä ympäristöstämme.
Kehitteillä on monia menetelmiä, joista useimmat nojautuvat alle 2,4 gigahertsin RF-energiaan. Tällä hetkellä lähimpänä kaupallistamista ovat teollisuussovelluksiin tarkoitetut laitteet, joita käytetään tuotantoautomaation koneissa, varastolaitteiden jäljittämisessä, paristottomissa omaisuuden merkintätarroissa ja elektronisissa varaston merkintätarroissa, koska näissä asennuksissa voidaan hyödyntää RF-energian siirtoon tarkoitettuja yhdyskäytäviä. Tulevaisuudessa älykodeissa jokaisella reitittimellä ja älylaitteen yhdyskäytävällä voidaan siirtää myös RF-energiaa. Markkinoille voi piankin olla tulossa erittäin pitkään toimivia sähkökäyttöisiä hammasharjoja, avainkortteja, näppäimistöjä, kuulokkeita, tietokonehiiriä ja kaikkea muuta.
Miltä tulevaisuus näyttää?
IoT ei kasvaisi ennustetulla nopeudella, jos se olisi aina paristoista riippuvainen. Monissa käyttökohteissa ei kuitenkaan vielä hyödynnetä täysin langattomuuden potentiaalia. Asiantuntijat ovat jatkuvasti työskentelemässä yhteistyössä langattoman IoT:n edistämiseksi, mutta myös perusteholähde vaatisi uudelleen arviointia.
Myös yhä useampi yritys ja julkisyhteisö on mukana satsaamassa vihreään siirtymään, mikä edellyttää pariston kyseenalaistamista sellaisena kuin me sen tunnemme.