ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT USCONTACT
2025  # megabox i st f wallpaper

IN FOCUS

Suomalaisyritykset suuntaavat Latviaan

Latvia on tasaisesti noussut suomalaisten yrittäjien kiinnostuksen kohteeksi – ei vain lähimarkkinana, vaan aidosti kasvun ja innovoinnin kumppanina. Osaava työvoima, strateginen sijainti ja yhä suotuisampi investointiympäristö tekevät Latviasta yhden lupaavimmista kohteista suomalaisyritysten laajentumiselle Baltiaan ja sen ulkopuolelle.

Lue lisää...

ETNtv

 
ECF25 videos
  • Jaakko Ala-Paavola, Etteplan
  • Aku Wilenius, CN Rood
  • Tiitus Aho, Tria Technologies
  • Joe Hill, Digi International
  • Timo Poikonen, congatec
  • ECF25 panel
ECF24 videos
  • Timo Poikonen, congatec
  • Petri Sutela, Testhouse Nordic
  • Tomi Engdahl, CVG Convergens
  • Henrik Petersen, Adlink Technology
  • Dan Still , CSC
  • Aleksi Kallio, CSC
  • Antti Tolvanen, Etteplan
ECF23 videos
  • Milan Piskla & David Gustafik, Ciklum
  • Jarno Ahlström, Check Point Software
  • Tiitus Aho, Avnet Embedded
  • Hans Andersson, Acal BFi
  • Pasi Suhonen, Rohde & Schwarz
  • Joachim Preissner, Analog Devices
ECF22 videos
  • Antti Tolvanen, Etteplan
  • Timo Poikonen, congatec
  • Kimmo Järvinen, Xiphera
  • Sigurd Hellesvik, Nordic Semiconductor
  • Hans Andersson, Acal BFi
  • Andrea J. Beuter, Real-Time Systems
  • Ronald Singh, Digi International
  • Pertti Jalasvirta, CyberWatch Finland
ECF19 videos
  • Julius Kaluzevicius, Rutronik.com
  • Carsten Kindler, Altium
  • Tino Pyssysalo, Qt Company
  • Timo Poikonen, congatec
  • Wolfgang Meier, Data-Modul
  • Ronald Singh, Digi International
  • Bobby Vale, Advantech
  • Antti Tolvanen, Etteplan
  • Zach Shelby, Arm VP of Developers
ECF18 videos
  • Jaakko Ala-Paavola, Etteplan CTO
  • Heikki Ailisto, VTT
  • Lauri Koskinen, Minima Processor CTO
  • Tim Jensen, Avnet Integrated
  • Antti Löytynoja, Mathworks
  • Ilmari Veijola, Siemens

logotypen

ETNdigi - OPPO december
TMSNet  advertisement
ETNdigi
2025  # megabox i st f wallpaper
A la carte
AUTOMATION DEVICES EMBEDDED NETWORKS TEST&MEASUREMENT SOFTWARE POWER BUSINESS NEW PRODUCTS
ADVERTISE SUBSCRIBE TECHNICAL ARTICLES EVENTS ETNdigi ABOUT US CONTACT
Share on Facebook Share on Twitter Share on LinkedIn

TECHNICAL ARTICLES

Mitä IoT-rauta vaatii?

Tietoja
Kirjoittanut Anbarasu Samiappan ja Jaya Kathuria, Cypress Semiconductor
Julkaistu: 13.11.2018
  • Sulautetut
  • Suunnittelu & ohjelmointi

Pärjätäkseen IoT-markinoilla laitevalmistajien täytyy oppia innovoimaan nopeammin. IoT-sovelluksien kirjo on loppumaton ja menestyvät yritykset antavat kehittäjilleen mahdollisuuden jatkuvasti tunnistaa ja toteuttaa uusia ja yhä hyödyllisempiä tapoja valjastaa käyttöön antureita, monitoroida erityyppistä dataa ja ohjata laitteiden ekosysteemejä.

Artikkelin ovat kirjoittaneet Cypress Semiconductorin Anbarasu Samiappan ja Jaya Kathuria. 

IoT-sovellukset kattavat hyvin monenlaisia laitetyyppejä puettavista laitteista autoihin, koteihin, teollisuudenaloihin ja jopa kaupunkeihin. Nämä sovellukset vaativat jatkuvasti enemmän energiatehokkuutta, innovaatioita ja tietoturvaa. Sovellukset ovat tärkeitä ja ne täytyy kietoa intuitiiviseen ohjelmistoon, joka on suunniteltu edistämään laitteiden helppokäyttöisyyttä.

IoT-pohjaisten tuotteiden keskiössä ovat mikro-ohjaimet, ja oikean mikro-ohjaimen valinta on avainasemassa, kun yritetään vastata asiakkaan vaatimuksiin.

Kaksi eri IoT-markkinaa

IoT-markkina voidaan laajasti luokitella kahteen kategoriaan: kuluttaja-IoT ja liiketoiminta-IoT. Kuluttaja-IoT sisältää kodin, elintava, terveyden ja liikkuvuuden. Laitteet ovat usein henkilöiden verkkoon liitettyjä tuotteita, jota parantavat heidän tuottavuuttaan, turvallisuuttaan ja elintapaansa.

Kuva 1. Kuluttaja-IoT:n markkinoiden jakautuminen.

Liiketoiminta-IoT on laaja alue, joka kattaa vähittäiskaupan, terveyden, energian, liikkuvuuden, kaupungit, tuotannon ja julkiset palvelut. Tämä alue muuttaa organisaatiot ja yhteisöt niin, että ne voivat mahdollistaa uuden taloudellisen kasvun yhdistämällä datan, ihmiset ja koneet parantaakseen taloudellista tuottavuutta, tehokkuutta ja päivittäisi toimintoja.

Kuva 2. Liiketoiminta-IoT:n markkinoiden jakautuminen.

Mikro-ohjaimen valmistamiseen käytetty prosessiteknologia on kriittinen tekijä sen suorituskyvyn, vähävirtaisten ominaisuuksien ja kustannusten kannalta. IoT-sovellukset vaativat hyvin energiatehokasta aktiivitehonkulutusta sekä alhaista low power -tilan tehonkulutusta järjestelmän keskimääräisen energiatehokkuuden kannalta. Jatkuvat edistysaskeleet valmistustekniikassa ovat johtaneet sirukokojen kutistumiseen. Tämä vähentää piirin kokonaiskustannuksia, sillä se samalla piikiekolla voidaan valmistaa enemmän ohjainpiirejä. Piisirun kutistuminen vaikuttaa myös suoraan suorituskykyyn ja tehonkulutukseen. Sirun pienentäminen pienentää jokaisen transistorin päälle ja pois kytkemiseen vaadittavaa virtaa samalla, kun kellotaajuus pidetään ennallaan. Tämän takia pienempi siru kuluttaa vähemmän tehoa suuremmalla kellotaajuudella eli suorituskyky kasvaa.

Esimerkiksi 40 nanometrin prosessitekniikka, jota käytetään PSoC 6 BLE -sarjan mikro-ohjainten valmistamiseen, tuottaa eri IOT-sovelluksiin suorituskykyisiä ja energiatehokkaita toteutuksia. Deep sleep -tila tarvitsee vain muutaman mikroampeerin. Muut tehomoodit, kuten Active, Sleep, Low Power Active ja Low Power Sleep antavat suunnittelijoille joustavuuden optimoida järjestelmän tehonkulutus samalla, kun säilytetään korkea suorituskyky sitä tarvittaessa.

 

Kuva 3. IoT-sovelluksen vähävirtaisen mikro-ohjaimen lohkokaavio.

Yksi suurimpia haasteita IoT-laitteen suunnittelussa on se, että ne saattavat olla tehosyöppöjä. Useimmat IoT-laitteet ovat aina päällä ja pienikokoisia, joten niiden sisältämän pariston koko on rajallinen. Mikro-ohjainvalmistajat miettivät monia eri tekijöitä optimoidessaan mikro-ohjainta IOT-sovellukseen, kuten esimerkiksi

  • Prosessitekniikan parantaminen
  • Pitkälle joustavien tehotilojen tai -moodien kehittäminen
  • Teho-optimoitujen laitepohjaisten IP-lohkojen mahdollistaminen
  • Suurempi integraatio komponenttimäärän vähentämiseksi
  • Flash-liitännän nopeuden optimointi
  • Välimuistin mahdollistaminen
  • Laajemman toimintajännitealueen tukeminen

Ikävä kyllä, vaikka prosessitekniikan kutistaminen parantaa suorituskykyä, tehonkulutusta ja integraatioastetta, se tuo mukanaan haasteen hallita vuotovirtoja, erityisesti alhaisen tehon tiloissa. Vuotovirtojen hallitsemiseksi ohjainvalmistajat käyttävät erikoistransistoritekniikoita, kuten monihilapiirejä, suurijännitetransistoreja / logiikkaa / piirejä, jotka on suunniteltu erityisesti muistisoluihin, sekä muita ratkaisuja.

Optimoitua tehonkulutusta

Joustavien tehotilojen saatavuus antaa suunnittelijalle mahdollisuuden ajoittaa yksittäisiä järjestelmän tapahtumia (event) siten, että keskimääräinen tehonkulutus voidaan optimoida. Avaintekniikka on tarjota useita oheislaitteita, jotka voivat toimia alhaisen virrankulutuksen (low power) tilassa ja jotka voidaan herättää suorittamaan omaa toimintoa ilman, että tarvitsee herättää CPU-prosessoria. Joissakin ohjaimissa on myös erityinen alhaisen tehonkulutuksen aktiivitila, jossa oheislaitteet voivat olla rajoitetusti toiminnassa (esimerkiksi alhaisemmalla kellotaajuudella tai jännitteellä), millä voidaan edelleen optimoida sovelluksen tehonkulutusta. Jopa tiettyjä oheislaitteita voidaan suunnitella optimoimaan tehonkulutusta: esimerkiksi BLE-radio voidaan suunnitella tukemaan vähävirtaista langatonta yhteyttä.

Yksi tehonkulutukseen merkittävästi vaikuttava elementti on haihtumaton muisti. Tämä koskee erityisesti ohjaimia, joissa firmware-ohjelmisto tallennetaan flash-muistiin. Flash-pääsyn eli väylän optimointi johtaa merkittävään tehonkulutuksen vähentämiseen. Tavoite on minimoida flash- lukujen määrä. Tässä käytetään pääasiassa kahta tekniikkaa. Yksi menetelmä on tarjota käyttöön välimuisti. Tällä tavalla varsinaista koodimuistia (eli flashia) ei tarvitse lukea jokaisen kellojakson aikana. Toinen tapa on lisätä haetun (fetch) datan määrää yhden kellojakson aikana. Leveämmän väylän käyttäminen vähentää flash-luvun tarvetta.

IoT-pohjaisissa mikro-ohjaimissa voi myös olla joustava tehojärjestelmä. Tukemalla laajaa syöttöjännitealuetta mikro-ohjaimelle voidaan syöttää virtaa useasta eri lähteestä. Esimerkiksi yksinkertainen IoT-sovellus kuten aktiivisuusranneke voi saada virtansa nappiparistosta, kun monimutkaisemmat IoT-sovellukset kuten älykello voidaan virtaistaa PCIM- eli tehonhallintapiireillä (Power Management Integrated Circuits). Joissakin mikro-ohjaimissa on sisäinen buck-muunnin reguloimassa tehoa tehokkaasti.

Kun mietitään mikro-ohjaimen tehomoodeja, on tärkeää katsoa perusarkkitehtuuria syvemmälle. Esimerkiksi standardi Arm-prosessoriydin tukee Active-, Sleep- ja Deep Sleep -tiloja. Lisätehotilat mikro-ohjaintoimittaja yleensä lisää itse. Esimerkiksi Cypressin PSoC 6 BLE -ohjain toimii kuudessa eri tehotilassa lisäten joukkoon Low Power Active-, Low Power Sleep- ja Hibernate-tilat.

Kuva 4. Esimerkki tehotilojen välillä siirtymisestä PSoC 6 BLE -mikro-ohjaimella.

Moniprosessoriohjaimet – rinnakkaisia sovelluksia nopeammin

IoT-järjestelmien monimutkaisuus kasvaa koko ajan samalla kun niiden fyysinen koko pienenee. Ohjainvalmistajat pyrkivät parantamaan järjestelmän suorituskykyä samalla kun niiden koko ja tehonkulutus yritetään saada mahdollisimman pieneksi. Moniydinohjaimet ja järjestelmäpiirit tuovat lisää suorituskykyä integroimalla enemmän toimintoja yhdelle sirulla ja minimoimalla käytetyn piialan. Moniydinprosessori on mikro-ohjain tai järjestelmäpiiri, joka koostuu kahdesta tai useammasta itsenäisestä ytimestä (tai CPU:sta). Ytimet on tyypillisesti integroitu yhdelle sirulle, vaikka ne voidaan toteuttaa useina piireinä yhdessä kotelossa.

Moniydinohjaimet voivat tuoda suuren suorituskyvyn pienessä tilassa. Tyypillisessä IoT-suunnittelussa kuten puettavassa laitteessa tarvitaan enemmän kuin yksi mikro-ohjain: BLE-ohjain langattomiin yhteyksiin, kosketusohjain käyttöliittymän toteutukseen ja isäntäohjain sovelluksen ajamiseen. Näiden kolmen ohjaimen toiminnallisuus voidaan tuottaa yhdellä pitkälle integroidulla moniydinohjaimella.

Moniydinohjaimilla on monia muitakin etuja. Esimerkiksi niille voidaan integroida riittävästi resursseja, jotta CPU:t voivat käsitellä intensiivisiä tehtäviä rinnakkain ja näin hyötyä moniajon tehokkuudesta. Nämä auttavat suunnittelijaa osoittamaan järjestelmätapahtumat tehokkaasti tietyille ytimille, jotta tehonkulutus- ja suorituskykytavoitteet saavutettaisiin. Esimerkiksi kaksiytimisissä puettavissa suunnitteluissa ajoittaiset toiminnot kuten langaton lähettäminen ja kosketuksen aistiminen, jotka tarvitsevat vähemmän CPU:n väliintuloa, voidaan osoittaa yhdelle ytimelle. Toiset toiminnot kuten anturidatan fuusio, joka vaatii CPU:n tehokasta käyttöä, voidaan osoittaa toiselle ytimelle. Tällainen partitiointi lyhentää viivettä, kun järjestelmässä ajetaan useampaa kuin yhtä sovellusta. Integrointi myös parantaa tehokkuutta yhdistämällä protokollapinoja ja ohjelmamuistit.

 

Kuva 5. Esimerkiksi moniydinohjaimesta IoT-sovellukseen.

Kuva 6 esittää moniydinohjainta eli Cypressin PSoC 6 BLE -piiriä. Tällä kaksiytimisellä piirillä on kaksi 32-bittistä Arm Cortex -prosessoria, Cortex-M4 ja Cortex-M0+. Molemmilla on 32-bittinen dataväylä, 32-bittiset rekisterit ja 32-bittinen muistiliitäntä. Cortex-M4 on pääprosessori, joka on suunniteltu lyhyille keskeytysten vasteilla, suureen koodintiheyteen ja tehokkaaseen 32-bittiseen laskentaan tiukassa kustannus- ja tehonkulutusbudjetissa.

Cortex-M0+ palvelee toisen CPU:na, joka huolehtii tietoturvasta ja suojaustoiminnoista. Cortex-prosessoreilla on toteutettu Thumb-käskykannan alijoukon ja niissä on kaksi toimintamoodia: Thread Mode eli säiemoodi sekä Handler Mode eli käsittelymoodi. Prosessorit menevät säiemoodiin tullessaan reset-tilasta suorittamaan sovellusohjelmaa. Poikkeuksien käsittelyyn ne siirtyvät Handler-moodiin. Kun poikkeusten prosessointi on valmis, CPU:t palaavat säietilaan.

Kuva 6. Sulautetun moniydinohjaimen esimerkki (PSoC 6 BLE).

Prosessorin sisäinen viestintä

Moniydinohjaimissa vaaditaan prosessorin sisäistä viestintää (IPC, inter processor communication) koordinoimaan operaatioita ydinten kesken. IPC toimii tietoliikenteen hallitsijana käsittelemässä viestien vaihtoa prosessorien välillä. Modernit CPU-arkkitehtuurit kuten Arm Cortex tukevat moniydinviestintää sekä laitteistossa että firmware-ohjelmistossa. Yksi tällainen esimerkki on SEV-käsky (send event), joka osoittaa prosessin kaikille ytimille. IPC:n toteuttamiseksi ohjainvalmistajat ovat omaksuneet erilaisia menetelmiä:

Keskeytyspohjainen: Tässä lähestymistavassa yksi ydin lähettää keskeytyksen toiselle ytimelle ilmaistakseen sovellustapahtuman. Tyypillisesti keskeytysrutiini on hyvin kompakti eikä vaadi paljon koodimuistia. Kuten kaikissa keskeytysmekanismeissa, jokaisella keskeytyksellä on oma ISR-rutiini (Interrupt service Routine), jonka kautta spesifejä tehtäviä voidaan ajaa halutulla ytimellä. Varsinaiselle datansiirrolle on jaettu muisti, johon eri ytimet pääsevät käsiksi. Datan jakamisen lisäksi muisti tarjoaa mekanismin viestin pyytämiseen ja niiden kuittaamiseen.

Postilaatikko on jokaiselle CPU:lle dedikoitu muistitila RAM-muistissa viestien lähettämiseen ja vastaanottamiseen muilta prosessoreilta. Jokainen ydin ylläpitää omaa RAM-muistiaan (eli laatikkoa) ja lähettää viestejä toisten ytimien postilaatikoihin.

Viestijono käyttää kahta jaetun muistin aluetta tallentamaan viestit, jotka jokainen ydin lähettää toiselle. Ensimmäinen on käskypuskuriksi kutsuttu dedikoitu muisti, joka tallentaa isännältä (master) orjalle (slave) lähetetyt viestit. Toista muistia kutsutaan viestipuskuriksi ja se antaa orjan vastata isännälle.

Kuva 7. Erilaisia IPC-viestinnän tapoja.

Semaforit ovat mekanismi, jotka estävät erilaisia lähteitä pääsemästä jaettuun resurssiin samanaikaisesti. Moniydinprosessorissa jaetut laitesijainnit toimivat semaforeina ilmaisemaan esimerkiksi, josko tiettyä jaettua oheislaitetta käyttää jo tietty prosessoriydin. Ennen oheislaitteen aktivoimista järjestelmän muiden ydinten täytyy lukea semaforin status nähdäkseen, onko oheislaite käytettävissä.

Sarjamuistiliitäntä on paras ratkaisu IoT-muistille. Muisti on keskeinen osa jokaista IoT-järjestelmää ja sitä käytetään sekä ohjelmakoodin että datan tallennukseen. Nykyaikaisissa IoT-laitteissa tarvitaan yhä enemmän älyä, minkä takia tarvitaan enemmän muistia koodille ja datalle. Tämän muistin integroiminen kokonaan laitteen sisäiseksi muistiksi kasvattaisi ohjainpiirin koko ja kustannuksia. Vaihtoehtoinen tapa on mahdollistaa muistin laajentaminen ulkoisesti, kun siihen on tarvetta. Tämä antaa suunnittelijoille mahdollisuuden lisätä muistia loppusovelluksen tarpeiden mukaan. Jos kehitysprojektin aikana käy ilmi, ettei suunnitellussa varattu sisäinen muisti riitä, ulkoista lisämuistia voidaan tuoda mukaan ilman, että koko järjestelmä täytyy suunnitella uudelleen.

On myös tärkeää ottaa huomioon ulkoisen muistin liitännän nopeus ja tietoturva, sekä sen helppokäyttöisyys. Yleisesti ottaen sarjaliitäntä on rinnakkaista parempi valinta, jotta säästetään mikro-ohjaimen rajallisia IO-liitäntöjä. Vaikka SPI-pohjainen sarjamuisti tarjoaa kohtuullisia liitäntänopeuksia dataloggaukseen, koodin suorittaminen ulkoisesta muistista vaatii suurempia nopeuksia. Tämä vaatimukset ovat saaneet mikro-ohjainvalmistajat kehittämään vaihtoehtoja SPI-väylälle. Tässä on eri SPI-muotojen nopea vertailu:

  • SPI: Tukee 1 bitin siirtoa/kellojakso
  • Dual-SPI: Tukee 2 bitin siirtoa/kellojakso
  • Quad-SPI: Tukee 4 bitin siirtoa/kellojakso
  • Dual Quad-SPI: Tukee yhden tavun siirtoa/kellojakso

Tyypillisesti mikro-ohjain tukee samanaikaisesti useita muistityyppejä, mikä antaa suunnittelijalle eniten joustavuutta.

Koska monet IoT-järjestelmän käsittelevät käyttäjän henkilökohtaista dataa, on tärkeää varmistaa datan tietoturva. Myös koodimuisti pitää turvata laitteen auktorisoimattoman käytön estämiseksi. Ulkoiset muistit ovat tässä suhteessa haavoittuvaisempia, joten ulkoisesti tallennetun datan suojaamiseen tarvitaan erikoismekanismeja. Tämän takia mikro-ohjaimissa käytetään erilaisia salaustekniikoita (esimerkiksi AES, DES, RSA) suojaamaan dataa ja koodia luvattomalta pääsyltä. Esimerkiksi PSOC 6 BLE -ohjaimelle Cypress tarjoaa erityistä SMIF-oheisliitäntää (Serial Memory Interface), joka tukee sekä XIP-moodia (Execute in Place) koodin ajamiseen suoraan ulkoiselta muistilta, että MMIO-moodia (memo mapped IO) dataloggaukseen. Liitäntää ohjataan erikoiskomennoilla, kuten Flashin ohjelmointi/poispyyhintä, muistien asettaminen sleep mode -tilaan, jne.

Kuva 8. SMIF-väyläesimerkki (Serial Memory Interface).

SNIF antaa käyttäjän konfoguroida useita muisteja, jotka voivat olla erityyppisiä ja -kokoisia. Useat muistit mapataan eri osoitteisiin XIP-muistimoodissa. Muistit voivat olla eri tyyppiä, joten niitä voidaan käyttää eri tarkoituksiin järjestelmässä. Muistit voivat olla myös identtisiä ja konfiguroitu peräkkäisiin muistiavaruuksiin/osoitteisiin, jolloin ne simuloivat yhtä jatkuvaa, suurta muistia. SMIF-oheisliitäntä yhdessä yhdessä SPI-väyläisen flashmuistin kanssa on ulkoisen NAND- tai NOR-flashin toimiva korvaaja ja sillä voidaan myös säästää korttialaa. NAND-muistiin verrattuna ratkaisu on selvästi helppokäyttöisempi, sillä sarjamuotoinen flashmuisti voidaan mapata suoraan prosessorin muistiin datantallennusta varten ja XIP-tuen avulla voidaan myös ajaa ulkoista ohjelmakoodia.

Järjestelmän turvallisuus, tietoturva ja yksityisyys

Kun laite on liitetty verkkoon, kuvaan tulee mukaan sen hakkeroinnin mahdollisuus. Tämän takia IoT-laitteen turvallisuudessa ei voi tehdä kompromisseja, oli kyse sitten henkilökohtaisesta puettavasta laitteesta tai verkkoon liitetystä ajoneuvosta. Datan suojausta tarvitaan kaikilla tasoilla, mukaan lukien tallennus, prosessointi ja tietoliikenne, jotta järjestelmän luotettavuus voidaan taata. Lisäksi pitää turvata jokainen sovellus- tai firmware-ohjelmisto, mikä käsittelee dataa. Tällainen tietoturva voidaan toteuttaa kahdella tasolla. Ensimmäinen on ohjelmistotaso ja toinen laitetason tietoturva, eli ohjelmiston suojaaminen raudalla.

Tyypillisesti ohjelmistopohjainen tietoturva käyttää koodiavaruuteen tallennettuja salausavaimia. Vaikka tämä toimii teknisesti salauksessa ja salauksen purkamisessa prosessi on silti haavoittuvainen, koska kyse on tallennetusta koodista. Sillä hetkellä, kun koodi dekoodataan, tietoturva vaarantuu.

Laitepohjainen turva käyttää integroitua piiristöä suojaamaan järjestelmää: esimerkiksi koodin ja datan salaamisessa ja purkamisessa. Laitesuojaus on itseriittoinen, eikä se tarvitse lisäohjelmistoja toimiakseen, mikä eliminoi haittakoodin mahdollisuuden, saastumisen, ja muut haavoittuvuudet, jotka ovat riski järjestelmälle, käyttäjän datalle ja palveluille. Tämän takia laitepohjainen tietoturva on suositeltava lähestymistapa sensitiivisen datan ja koodin suojaamiseen. Tämän takia IoT-sovellusten mikro-ohjaimilla on edistyneitä piirille integroituja suojaustoimintoja, kuten salauslohkoja, koodin suojaus-IP:tä ja muita laitepohjaisia mekanismeja.

Laitepohjaisella suojauksella on vielä se lisäetu, että sen suorituskyky on parempi ja tehonkulutus alhaisempi kuin firmware-pohjaisilla toteutuksilla. Esimerkiksi Cypressin PSoC 6 BLE -ohjaimen dedikoitu salauslohko kiihdyttää salaustoimintoja. Lisäksi lohko tuottaa TRN-satunnaislukuja (True Random Number), symmetriseen avaimeen pohjaavaa salausta ja purkua, viestien autentikointia, sekä monia aputoimintoja kuten mahdollista/estä, keskeytysasetukset ja liputukset (flags). Tämä mikro-ohjain on myös varustettu turvakäynnistys- eli secure boot -toiminnolla. Se käyttää ROM-rutiineja taatakseen käyttäjädatan autentikoinnin flash-muistissa. Turvakäynnistys on prosessi, johon sisältyvä salaus antaa IoT-laitteeseen käynnistää vain sovelluksia, jotka on autentikoitu. Siksi vain luotettuja sovelluksia käynnistetään. Tämän ansiosta järjestelmä voidaan käynnistää tiedetystä ja luotetusta tilasta.

Kuva 9. IoT-sovelluksen mikro-ohjaimen turvallisuusekosysteemi.

MORE NEWS

NAND-sirujen hinnannousu jatkuu ja se on huono uutinen kaikille

NAND-muistien hintapaine ei ole hellittämässä, päinvastoin. TrendForcen marraskuussa 2025 julkaisema analyysi osoittaa, että koko muistiekosysteemin varastot ovat supistuneet samanaikaisesti tasolle, joka tekee hinnankorotuksista käytännössä väistämättömiä. Kun varastopuskureita ei enää ole, hinnanmuutokset siirtyvät nopeasti koko toimitusketjuun, aina siruista valmiisiin laitteisiin.

Polttomoottori katoaa Suomen teiltä

EasyParkin kokoamien tilastojen mukaan autojen määrä Suomen teillä on kääntynyt laskuun poikkeuksellisella tavalla vuonna 2025. Kun samaan aikaan ladattavien sähköautojen määrä kasvaa nopeasti, muutos osuu lähes kokonaan polttomoottoriautoihin. Niiden määrä on nyt selvässä laskussa.

Element14 haastaa insinöörit jouluhackathoniin

Farnellin suunnitteluyhteisö element14 on käynnistänyt vuosittaisen Holiday Hackathon -kilpailunsa, jossa yhteisön jäseniä kannustetaan suunnittelemaan ja toteuttamaan joulun aikaan liittyvä elektroniikkaprojekti. Kilpailu on avoinna tammikuun 11. päivään asti ja voittajat julkistetaan 16. tammikuuta.

Digita rakentaa 5G-privaattiverkon Outokummun Kemin kaivokselle

Digita ja Outokumpu aloittavat yhteistyön 5G-privaattiverkon toteuttamiseksi Outokummun Kemin kaivokselle. Uuden verkon tavoitteena on tukea kaivoksen digitalisaatio- ja automaatiokehitystä sekä parantaa tuotannon tehokkuutta ja työturvallisuutta vaativassa maanalaisessa ympäristössä.

USA on edelleen tärkein terveysteknologian vientimaa

Vaikka Trumpin hallinnon kauppapoliittinen linja ja paikallista tuotantoa suosivat signaalit herättävät epävarmuutta, suomalaiset terveysteknologiayritykset näkevät Yhdysvallat edelleen ylivoimaisesti tärkeimpänä vientimarkkinanaan. Business Finlandin Health 360 Finland -ohjelman johtaja Tarja Enalan mukaan markkinoiden peruslogiikka ei ole muuttunut eikä pitkäjänteinen yhteistyö horju hallituskausien mukana.

Samsung tuo älypuhelimista tutun DRAM-tekniikan palvelimiin

Samsung Electronics tuo älypuhelimista ja mobiililaitteista tutun LPDDR-muistitekniikan ensimmäistä kertaa varsinaiseen palvelinkäyttöön. Yhtiön uusi SOCAMM2-muistimoduuli (Small Outline Compression Attached Memory Module) on suunniteltu erityisesti tekoälypalvelimiin ja datakeskuksiin, joissa suorituskyvyn ohella ratkaisevaksi tekijäksi on noussut energiankulutus.

CES vie älylasit uuteen aikakauteen

Älylasit ovat palaamassa teknologia-alan parrasvaloihin, ja CES 2026 -messut näyttävät muodostuvan käännekohdaksi niiden kehityksessä. Itävaltalainen TriLite tuo Las Vegasiin uuden Trixel 3 Cube -näyttömoottorinsa, jonka tavoitteena on ratkaista yksi AR-lasien suurimmista pullonkauloista: koko, virrankulutus ja integroitavuus.

Aktiivisuusrannekkeiden myynti kasvaa hitaasti – raha virtaa kalliimpiin laitteisiin

Aktiivisuusrannekkeiden ja älykellojen globaali markkina kasvoi kolmannella neljänneksellä maltillisesti, mutta rahavirrat kertovat aivan toista tarinaa. Omdian tuoreen tutkimuksen mukaan wearable band -laitteiden toimitukset kasvoivat 3 prosenttia 54,6 miljoonaan kappaleeseen 3Q25:llä, mutta markkinan arvo nousi peräti 12 prosenttia 12,3 miljardiin dollariin.

Iso askel myyjille: ChatGPT:stä tulee Salesforcen järjestelmän käyttöliittymä

Salesforce tuo CRM-järjestelmänsä suoraan ChatGPT:n keskusteluun. Yhtiö on julkaissut Agentforce Sales -sovelluksen ChatGPT-alustalle, mikä muuttaa perustavanlaatuisesti tapaa, jolla myyjät käyttävät CRM:ää. Kyse ei ole enää tekoälyavusteisesta raportoinnista, vaan natiivista integraatiosta, jossa ChatGPT toimii Salesforcen käyttöliittymänä.

5G-satelliittilaitteiden sertifiointi voi nyt alkaa

5G-satelliittiyhteydet ovat siirtymässä tutkimus- ja pilottivaiheesta kohti kaupallista todellisuutta. Anritsun 5G RF -testausjärjestelmä on saanut maailman ensimmäisen PTCRB-hyväksynnän 5G NR NTN -testitapauksille, mikä avaa virallisen sertifiointipolun satelliitteihin kytkeytyville 5G-päätelaitteille.

Kun Ethernet kiihtyy, muuntajista tulee kriittisiä

ETN - Technical articleSuuren nopeuden Ethernet-muuntajien tulee täyttää nykyaikaisille, tehokkaille verkkolaitteille asetetut vaatimukset. Niiden tehtävänä on turvata luotettava ja varma datansiirto, optimoida signaalin laatu ja tehostaa verkon yleistä suorituskykyä ja kapasiteetin hyödyntämistä.

OnePlus 15 vs 15R: kuinka suuri ero kameroissa todella on?

OnePlussan uusi 15-sukupolvi jakautuu selvästi kahteen eri suuntaan. OnePlus 15R tuo huippuluokan suorituskyvyn ja suuren akun edullisempaan hintaluokkaan, kun taas OnePlus 15 on yhtiön varsinainen lippulaivamalli. Paperilla molemmat lupaavat paljon myös kameran osalta, jopa saman pääkennon. Käytännön kuvaustestit kertovat kuitenkin toisenlaisen tarinan.

Polttomoottorikiellosta luovutaan, mutta eurooppalaiset ostavat ladattavia

Euroopan unionin tavoite kieltää uusien polttomoottoriautojen myynti vuodesta 2035 alkaen on murenemassa poliittisen paineen alla. Samalla tuore markkinadata osoittaa, että kuluttajat ovat jo siirtymässä ladattaviin ajoneuvoihin, mutta omilla ehdoillaan ja selvästi maltillisemmin kuin EU:n alkuperäinen linjaus oletti.

Suomalaiset lataavat sähköautojaan kotona

Sähköautoilijoiden maksama julkisen latauksen summa nousi viime vuonna merkittäväksi, mutta valtaosa lataamisesta tapahtuu edelleen kotona. Liikenne- ja viestintävirasto Traficomin tuore markkinakatsaus osoittaa, että kotilataus on ylivoimaisesti tärkein tapa pitää sähköautot liikkeessä Suomessa.

OnePlussan uusin houkuttaa jättiakulla ja 165 hertsin näytöllä

OnePlus on julkistanut uuden OnePlus 15R -älypuhelimen, joka sijoittuu yhtiön mallistossa lippulaivojen alapuolelle mutta tuo silti mukanaan hyvän suorituskyvyn, erittäin suuren akun ja nopean AMOLED-näytön. OnePlussan mukaan 15R on suunnattu käyttäjille, jotka hakevat huippuluokan suorituskykyä ja pitkää käyttöaikaa kilpailukykyisempään hintaluokkaan.

Muistit kallistuvat – ensi vuodesta tulee vaikea kiinalaisille valmistajille

Älypuhelinmarkkina kääntyy uudelleen laskuun vuonna 2026, ja kehityksen suurin yksittäinen ajuri on muistipiirien voimakas hinnannousu. Counterpoint Researchin tuoreen ennusteen mukaan globaalit älypuhelintoimitukset supistuvat ensi vuonna 2,1 prosenttia, kun DRAM- ja NAND-muistien kallistuminen nostaa laitteiden valmistuskustannuksia – ja osuu erityisen kovaa kiinalaisiin valmistajiin.

Vielä ehdit mukaan joulukuun OPPO-kisaan

Uusi ETNdigi 2/2025 pureutuu tämän hetken puhutuimpiin teknologia-aiheisiin: tekoälyyn, turvallisuuteen, sulautettuihin järjestelmiin ja suomalaisen elektroniikka-alan tulevaisuuteen. Vankka paketti on tuttuun tapaan luettavissa ilmaiseksi. Lue lehti ja osallistu joulukuun kisaan.

Patentit kertovat: Suomi on suurmaa kvanttiteknologiassa

Suomi kuuluu Euroopan viiden kärkimaan joukkoon kvanttiteknologiaan liittyvissä patenttihakemuksissa. Tämä käy ilmi Euroopan patenttiviraston (EPO) ja Taloudellisen yhteistyön ja kehityksen järjestön (OECD) tuoreesta Mapping the global quantum ecosystem -tutkimuksesta. Patenttidata osoittaa, että suomalainen kvanttiosaaminen ei ole vain tutkimuksellisesti vahvaa, vaan myös yhä aktiivisemmin suojattua ja kaupallistamiseen tähtäävää.

Renesas yhdistää autojen järjestelmät yhdelle prosessorille

Renesas tuo autoelektroniikkaan merkittävän uudistuksen, kun yhtiön uusi R-Car Gen 5 X5H -järjestelmäpiiri on suunniteltu ajamaan auton keskeisiä järjestelmiä rinnakkain yhdellä prosessorilla. Aiemmin erillisillä ohjaimilla toteutetut ADAS-toiminnot, viihde/infotainment, tekoälypohjainen käyttöliittymä ja ajoneuvon gateway-tehtävät voidaan nyt yhdistää samaan laskenta-alustaan.

Tekoälybuumi jatkuu – Keysight lisää apurit RF-suunnitteluun

Keysight Technologies tuo tekoälyavusteiset Chat- ja Copilot-toiminnot Advanced Design System (ADS) -suunnitteluohjelmistoonsa. Uudet virtuaaliapurit on tarkoitettu nopeuttamaan RF- ja suurtaajuussuunnittelua, madaltamaan työkalujen oppimiskynnystä ja automatisoimaan toistuvia työvaiheita – ilman että suunnitteludata poistuu yrityksen omasta IT-ympäristöstä.

ETNdigi 1/2025 is out
2025  # mobox för wallpaper
TMSNet  advertisement

© Elektroniikkalehti

 
 

TECHNICAL ARTICLES

Kun Ethernet kiihtyy, muuntajista tulee kriittisiä

ETN - Technical articleSuuren nopeuden Ethernet-muuntajien tulee täyttää nykyaikaisille, tehokkaille verkkolaitteille asetetut vaatimukset. Niiden tehtävänä on turvata luotettava ja varma datansiirto, optimoida signaalin laatu ja tehostaa verkon yleistä suorituskykyä ja kapasiteetin hyödyntämistä.

Lue lisää...

OPINION

Commodore 64 Ultimate on täydellistä nostalgiaa – ja täysin tarpeeton

Commodore 64 Ultimate on ehkä täydellisin nostalgialevyke, jonka 2020-luvun retrobuumi on meille toistaiseksi tarjonnut. Se näyttää Commodorelta, kuulostaa Commodorelta ja toimii Commodorena – koska se pitkälti on Commodore. Uusi laite perustuu AMD Xilinx Artix-7 -FPGA:han, joka jäljentää alkuperäisen emolevyn logiikan piiritasolla. Mutta mitä enemmän speksejä selaa, sitä selvemmin nousee esiin yksi kysymys: miksi kukaan tarvitsee tätä?

Lue lisää...

LATEST NEWS

  • NAND-sirujen hinnannousu jatkuu ja se on huono uutinen kaikille
  • Polttomoottori katoaa Suomen teiltä
  • Element14 haastaa insinöörit jouluhackathoniin
  • Digita rakentaa 5G-privaattiverkon Outokummun Kemin kaivokselle
  • USA on edelleen tärkein terveysteknologian vientimaa

NEW PRODUCTS

  • Click-kortilla voidaan ohjata 15 ampeerin teollisuusmoottoreita
  • Pian kännykkäsi erottaa avaimen 11 metrin päästä
  • Lataa laitteet auringon- tai sisävalosta
  • DigiKeyn uutuus: nyt voit konfiguroida teholähteen vapaasti verkossa
  • PCIe5-tallennusta datakeskuksiin pienellä virralla
 
 

Section Tapet