Markkinoilla kaivataan nykyistä vähemmän energiaa kuluttavia muistitekniikoita. Yksi seuraavan sukupolven mahdollisuuksista on resistiivinen satunnaispääsymuisti tai RRAM. Nykyistä parempia RRAM-muisteja ovat kehittämässä Purdue Universityn tutkijat yhteistyössä National Institute of Standards and Technologyn (NIST) ja Theiss Research Inc:n kanssa.
Työn alla olevissa uusissa muisteissa on tarkoitus hyödyntää molybdeeni ditelluride -materiaalissa aiemmin havaitsematonta toiminnallisuutta. RRAM:ssa käytetään sähkövirtaa pinottavien materiaalien muodostamaan muistisoluun aiheuttamaan resistanssin muutoksen 0:ksi tai 1:ksi. Tällä hetkellä käytetyt materiaalit eivät ole tuottaneet RRAM-muisteille kaupallista menestystä.
Molybdeeni-ditelluridi voi sen tehdä koska siinä tilojen vaihtaminen tapahtuu nopeammin ja vähemmällä tehonkulutuksella kuin nykyisin.
- Emme ole vielä tutkineet järjestelmäväsymystä tämän uuden materiaalin avulla, mutta toivomme, että se on sekä nopeampi että luotettavampi kuin muut lähestymistavat, joita olemme havainneet, toteaa Purduen professori Joerg Appenzeller.
Singaporen kansallisen yliopiston (National University of Singapore, NUS) insinöörien johtama kansainvälisten tutkijoiden ryhmä on puolestaan huomannut, että ferrimagneettien käyttö voi johtaa dramaattisesti stabiilimpiin ja tehokkaampiin spinperustaisiin muisteihin.
NUS:n tutkijat ovat kehitelleet uudenlaisen magneettisen rakenteen, joka kykenee manipuloimaan digitaalista informaatiota 20 kertaa tehokkaammin ja 10 kertaa vakaammin kuin nykyiset kaupalliset spintroniset muistit. Tämä läpimurto mahdollistaa spinpohjaisen muistin kaupallisen kasvun nopeuttamisen.
- Löytömme voisi tarjota uudenlaisen laitealustan spintronisille teollisuudelle, joka tällä hetkellä kamppailee epävakauden ja skaalautuvuuteen liittyvien ongelmien parissa nyt käytettävien magneettisten rakenteiden vuoksi, toteaa projektia ohjannut professori Yang Hyunsoo.
Professori Yangin ryhmä hyödynsi työssään ainutlaatuista atomijärjestelyä ferrimagneetissa. Niissä yhden atomin aiheuttaman vaikutuksen seurauksena informaatio kulkee nopeammin ja entistä vähemmällä tehonkäytöllä.
MIT:n ja Brookhaven National Laboratoryn tutkijat ovat puolestaan osoittaneet, että he voivat ohjata ohutkalvomateriaalin magneettisia ominaisuuksia yksinkertaisesti pienellä jännitteellä. Ominaisuudet myös säilyvät ilman jatkuvaa tehonkäyttöä.
Eräs spintronisten logiikka- ja muistitekniikoiden ongelmista on ollut tapa helposti ja nopeasti hallita materiaalin magneettisia ominaisuuksia sähköisesti käyttämällä vain jännitettä.
Aikaisemmat yritykset ovat tukeutuneet elektronien kerääntymiseen metallisen magneetin ja eristimen väliseen rajapintaan käyttäen kondensaattorin kaltaista rakennetta.
Sähkövaraus voi muuttaa materiaalin magneettisia ominaisuuksia, mutta vain hyvin pienellä määrällä, mikä tekee siitä epäkäytännöllisen käytettäväksi todellisissa laitteissa.
Tässä ratkaisussa käytetään vetyioneja aikaisempien kokeiden suurempien happi-ionien sijasta. Koska vetyioneja voidaan vetää nopeasti ja helposti ulos, uusi järjestelmä on paljon nopeampi ja voi tarjoaa muita merkittäviä etuja, toteavat tutkijat.
Veijo Hänninen
Nanobittejä 18.12.2018