Jotta terahertsit saataisiin laajempaan käyttöön tarvitaan tehokkaampia terahertsien lähteitä. Eräs perinteisimpiä terahertsien lähteitä on kvanttikaskadilaserit (QCL). Niiden antoteho on myös suhteellisen korkea verrattuna muihin terahertsilähteisiin. Kiinalaiset tutkijat kertovat saavuttaneensa kehittämällään QCL-laserilla 230 milliwatin antotehon jatkuvan aallon tilassa. Edellinen ennätys oli 138 milliwattia.
Seuraavaksi kiinalaisen China Academy of Engineering Physicsin tutkijat Xuemin Wangin johdolla tavoittelevat yhden watin jatkuvaa antotehoa. Pulssiaaltoina se on jo saavutettu.
Kenttäkelpoisempia terahertsilähteitä tavoiteltaessa tähtäimessä on yhden komponentin ratkaisu, joka pystyy huoneenlämpötilassa jatkuvaan aaltoon ja laajaan taajuusviritettävään toimintaan. Esimerkiksi Max Planck -instituutissa on saatu aikaan emitteri, joka tuottaa 1 - 30 terahertsisen spektrin säteilyä suhteellisen alhaisin kustannuksin.
Rochesterin yliopistossa on puolestaan luotu terahertsiaalto, joka on yli viisi kertaa vahvempi kuin mitä tuotetaan tavanomaisin keinoin. Tämän epäsovinnaisen lasersäteen käyttö mahdollistaa kaukotutkaukset kemiallisista, biologisista ja räjähtävistä materiaaleista etäisyydeltä, jossa ei tarvitse olla aivan kohteen vieressä.
Jo vuonna 2014 kehitettiin terahertsi-ilmaisimia, jotka perustuivat hiilinanoputkiin. Sittemmin mukaan ovat tulleet myös grafeeni ja erilaiset plasmoniset ratkaisut.
Myös perinteisempiä mekaanisia ratkaisuja kuten aaltoputkia hyödynnetään terahertsitekniikassa ja myös metamateriaali on otettu käyttöön tällä alalla.
Veijo Hänninen
Nanobittejä 12.1.2017