Gallium-nitridi (GaN) tarjoaa merkittäviä etuja tehokkuuden ja tehotiheyden lisäämisessä, mikä mahdollistaa suunnittelijoille huomattavasti haastavampien virtalähdemääritysten täyttämisen verrattuna piipohjaisiin MOSFET-komponentteihin. Yksi kohtuullinen huolenaihe minkä tahansa uuden, merkittäviä etuja tarjoavan teknologian suhteen on sen kestävyys ja luotettavuus. Poistaaksemme mahdolliset epäilykset, joita käyttäjillä saattaa olla, tarkastellaan GaN-teknologian kestävyyttä, luotettavuutta ja laatua.
Fitnessranneke on hankala elektroniikkalaite, sillä ihoa vasten sijoitettuna se on alttiina sähköstaattisille purkauksille. Tämän takia laitteen elektroniikka pitää suojata erittäin huolellisesti. Littelfusen James Colby kertoo, miten tämä tapahtuu.
Kideoskillaattori tahdistaa edelleen valtaosan elektroniikkalaitteista. Markkina on kuitenkin muuttumassa ja yhä useammin sovelluksiin valitaan piipohjainen MEMS-oskillaattori.
Kaikki puhuvat verkon toimintojen virtualisoinnista. NFV ei kuitenkaan ole mikään helppo hanke. Suorituskyvyn, luotettavuuden ja käytettävyyden verkossa pitäisi säilyä samalla, kun siirrytään lennossa ohjelmistopohjaisuuteen.
Hankalassa paikassa sijaitsevan anturin pitäisi tulla toimeen itse keräämällään energialla. Mutta paljonko anturi energiaa tarvitsee? Millä keinoin se kerätään? Miten se varastoidaan?
USB-väylä on universaali tekniikka, joka löytyy lähes kaikista laitteista. Väylä ei kuitenkaan enää riitä esimerkiksi videon siirtoon turvakameroissa. HD- ja UHD- eli ultrateräväpiirtovideo tuottavat niin massiivisen datavirran, ettei vanha USB 2.0 siihen taivu. Onneksi USB 3.0 on tulossa.
Langattomasta lataamisesta on tulossa keskeinen osa kannettavan elektroniikan ominaisuuksia. Analyytikot ja yritykset uskovat, että iso osa kuluttajista haluaa ladata laitteensa langattomasti latausalustoilla kaikkialla kodista lentokentille ja autoihin.
Perinteinen tapa valita piirialusta esimerkiksi anturisovellukseen on valita ensin radiotekniikka, jota halutaan käyttää. Texas Instrumentsin SimpleLink tuo kehittäjille joustavuutta, jota aiemmin ei ole ollut tarjolla.
Esineiden internet on muuttamassa sitä, miten tehdastuotantoa hallitaan. Elektroniikkateollisuudelle kyse on taas yhdestä tavasta osoittaa, miten sovellusekosysteemiä tarvitaan tekemään mahdollisesta totta.
Entä jos tarvitset tiettyä komponenttia 10 vuoden ajan, mutta sen valmistus päättyy jo muutaman vuoden päästä. Oikeiden kumppanien kanssa tähänkin ongelmaan löytyy elektroniikkatuotannossa keinoja.
Välillä älypuhelimet voivat olla hämmästyttävän typeriä. Ajatellaanpa esimerkiksi sitä, että toimistossa on omiin työtehtäviinsä keskittyviä työntekijöitä. Yhtäkkiä hiljaisuuden rikkoo äänekäs popmusiikki, vaikka puhelimen haltija sattuu olemaan tupakkatauolla. Pöydälle jätetty puhelin värisee, liikkuu pöydän reunaa kohti, joten kollega joutuu nousemaan ylös ja sieppaamaan laitteen ennen kuin se putoaa lattialle.
Esineiden internet lupaa paljon. Tehokkaampaa arkielämää, parempaa turvallisuutta ja jopa terveellisempää elämää. Mutta mikään näistä ei onnistu ilman energiatehokkuuden paranemista.
Kun valitsee teholähdettää sovellukselleen, kannattaa olla silmä tarkkana. Joitakin powereita mainostetaan suurilla antotehoilla, jotka eivät käytännössä pidä paikkaansa.
Uusimmat älypuhelimet vaativat välillä enemmän tehoa esimerkiksi webbiselailussa. Tämä asettaa isoja vaatimuksia järjestelmän tehonsyötölle. Niihin voi vastata uuden polven regulaattoripiireillä.
Tehdashalleissa on käynnissä vallankumous, jota kutsutaan nimellä Teollisuus 4.0. Se edellyttää aiempaa tehokkaampaa ja suorituskykyisempää ja tiukempaan pakattua automaatiota. Ohjauslogiikat on pakko kutistaa.
Jotta voidaan vastata uuden teknologian vaatimuksiin ja pitää järjestelmät toimimassa ”kellon tavoin”, on aika harkita ajoitusratkaisuja uudelleen. Tässä kaksiosaisessa "Precision Timing" -artikkelissa opit, miksi mikroelektromekaanisiin järjestelmiin eli MEMS-komponentteihin perustuvat piiajoituslaitteet päihittävät kvartsin elektroniikkasuunnittelun uudella aikakaudella.
Kestävä digitaalinen infrastruktuuri on kriittinen, jotta tietoliikenneverkot voidaan tehokkaasti valjastaa tekoälyinnovaatioiden ja pilvipohjaisten palveluiden tarpeisiin. Tekoälyyn liittyvien datarikkaiden sovellusten lisääntyvä kysyntä edellyttää tietoliikenneverkkoa, joka kykenee käsittelemään suuria tietomääriä alhaisella viiveellä, kirjoittaa Orange Businessin kumppaniratkaisuista vastaava Carl Hansson.
Tule tapaamaan meitä tulevissa tapahtumissamme. R&S-seminaareihin saat kutsukirjeet ja uutiskirjeet suoraan sähköpostiisi, kun rekisteröidyt sivuillamme.